Skip to main content
Log in

Unipolar Switching Behavior in Highly Crystalline Hexagonal Boron Nitride

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We observed resistive switching in highly crystalline layered insulator hexagonal boron nitride (h-BN) under electric field in a nano-device configuration. Two distinct resistive states were observed in the 2D material heterostack. Electrical characterization using capacitance-voltage approach further revealed the role of h-BN as the active switching element. The switching behavior could be attributed to substitutional doping of h-BN under electric field present in the active region, possibly resulting in the formation of multi-element complex in which electrical conductivity depends on the amount of substituted dopant in the boron nitride crystal lattice. Since switching is observed independent of the direction of electric field, it is unipolar in nature. The observed memristance phenomenon in layered insulator may be potentially used in the form of NVM, providing possible direction to implement information storage or reconfigurable logic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lankhorst M. H. R.; Ketelaars B. W. S. M. M.; Wolters R. A. M. Low-cost and Nanoscale Non-volatile Memory Concept for Future Silicon Chips. Nat Mater 2005, 4, 347–352.

    Article  CAS  Google Scholar 

  2. Yang J. J.; Pickett M. D.; Li X.; Ohlberg D. A. A.; Stewart D. R.; Williams R. S. Memristive Switching Mechanism for Metal/oxide/metal Nanodevices. Nat Nano 2008, 3, 429–433.

    Article  CAS  Google Scholar 

  3. Yang J. J.; Strachan J. P.; Miao F.; Zhang M.-X.; Pickett M. D.; Yi W.; Ohlberg D. A. A.; Medeiros-Ribeiro G.; Williams R. S. Metal/TiO2 Interfaces for Memristive Switches. Appl. Phys. A 2011, 102, 785–789.

    Article  CAS  Google Scholar 

  4. Szot K.; Speier W.; Bihlmayer G.; Waser R. Switching the Electrical Resistance of Individual Dislocations in Single-crystalline SrTiO3. Nat Mater 2006, 5, 312–320.

    Article  CAS  Google Scholar 

  5. Chen A.; Haddad S.; Wu Y. C.; Lan Z.; Fang T. N.; Kaza S. Switching Characteristics of Cu2O Metal-insulator-metal Resistive Memory. Applied Physics Letters 2007, 91, 123517–123517–3.

    Article  Google Scholar 

  6. Waser R.; Aono M. Nanoionics-based Resistive Switching Memories. Nat Mater 2007, 6, 833–840.

    Article  CAS  Google Scholar 

  7. Choi B. J.; Jeong D. S.; Kim S. K.; Rohde C.; Choi S.; Oh J. H.; Kim H.-J.; Hwang C. S.; Szot K.; Waser R. {etet al.} Resistive Switching Mechanism of TiO2 Thin Films Grown by Atomic-layer Deposition. Journal of Applied Physics 2005, 98, 033715–033715–10.

    Article  Google Scholar 

  8. Rozenberg M. J.; Inoue H.; Sanchez M. J. Strong Electron Correlation Effects in Nonvolatile Electronic Memory Devices. Applied Physics Letters 2006, 88, 033510–033510–3.

    Article  Google Scholar 

  9. Fors R.; Khartsev S. I.; Grishin A. M. Giant Resistance Switching in Metal-insulator-manganite Junctions: Evidence for Mott Transition. Phys. Rev. B 2005, 71, 045305.

    Article  Google Scholar 

  10. Lamb D. R.; Rundle P. C. A Non-filamentary Switching Action in Thermally Grown Silicon Dioxide Films. Br. J. Appl. Phys. 1967, 18, 29.

    Article  CAS  Google Scholar 

  11. Standley B.; Bao W.; Zhang H.; Bruck J.; Lau C. N.; Bockrath M. Graphene-Based Atomic-Scale Switches. Nano Lett. 2008, 8, 3345–3349.

    Article  CAS  Google Scholar 

  12. Yao J.; Zhong L.; Zhang Z.; He T.; Jin Z.; Wheeler P. J.; Natelson D.; Tour J. M. Resistive Switching in Nanogap Systems on SiO2 Substrates. Small 2009, 5, 2910–2915.

    Article  CAS  Google Scholar 

  13. Ci L.; Song L.; Jin C.; Jariwala D.; Wu D.; Li Y.; Srivastava A.; Wang Z. F.; Storr K.; Balicas L. {etet al.} Atomic Layers of Hybridized Boron Nitride and Graphene Domains. Nat Mater 2010, 9, 430–435.

    Article  CAS  Google Scholar 

  14. Alem N.; Ramasse Q.; Sarahan M.; Erni R.; Yazyev O.; Erickson K.; Louie S.; Zettl A. Atomic-scale Interaction Dynamics in Few-layer Hexagonal Boron Nitride (h-BN). Microscopy and Microanalysis 2011, 17, 1258–1259.

    Article  Google Scholar 

  15. Berseneva N.; Krasheninnikov A. V.; Nieminen R. M. Mechanisms of Postsynthesis Doping of Boron Nitride Nanostructures with Carbon from First-Principles Simulations. Phys. Rev. Lett. 2011, 107, 035501.

    Article  Google Scholar 

  16. Murali R.; Yang Y.; Brenner K.; Beck T.; Meindl J. D. Breakdown Current Density of Graphene Nanoribbons. Applied Physics Letters 2009, 94, 243114–243114–3.

    Article  Google Scholar 

  17. Lipp A.; Schwetz K. A.; Hunold K. Hexagonal Boron Nitride: Fabrication, Properties and Applications. Journal of the European Ceramic Society 1989, 5, 3–9.

    Article  CAS  Google Scholar 

  18. Park H.; Wadehra A.; Wilkins J. W.; Castro Neto A. H. Magnetic States and Optical Properties of Single-layer Carbon-doped Hexagonal Boron Nitride. Applied Physics Letters 2012, 100, 253115–253115–4.

    Article  Google Scholar 

  19. Wei X.; Wang M.-S.; Bando Y.; Golberg D. Electron-Beam-Induced Substitutional Carbon Doping of Boron Nitride Nanosheets, Nanoribbons, and Nanotubes. ACS Nano 2011, 5, 2916–2922.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, N., Jacobs-Gedrim, R.B. & Yu, B. Unipolar Switching Behavior in Highly Crystalline Hexagonal Boron Nitride. MRS Online Proceedings Library 1658, 1–7 (2014). https://doi.org/10.1557/opl.2014.503

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2014.503

Navigation