Skip to main content
Log in

Novel Biologically Inspired Nanostructured Scaffolds for Directing Chondrogenic Differentiation of Mesenchymal Stem Cells

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Cartilage defects, which are caused by a variety of reasons such as traumatic injuries, osteoarthritis, or osteoporosis, represent common and severe clinical problems. Each year, over 6 million people visit hospitals in the U.S. for various knee, wrist, and ankle problems. As modern medicine advances, new and novel methodologies have been explored and developed in order to solve and improve current medical problems. One of the areas of investigation is tissue engineering [1, 2]. Since cartilage matrix is nanocomposite, the goal of the current work is to use nanomaterials and nanofabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds for facilitating human bone marrow mesenchymal stem cell (MSC) chondrogenesis. For this purpose, through electrospinning techniques, we designed a series of novel 3D biomimetic nanostructured scaffolds based on carbon nanotubes and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension and surface nanoporosity were fabricated in this study. In vitro hMSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter or suitable nanoporous structures. More importantly, our in vitro differentiation results demonstrated that incorporation of the biomimetic carbon nanotubes and poly L-lysine coating can induce GAG and collagen synthesis that is indicative of chondrogenic differentiations of MSCs. Our novel scaffolds also performed better than controls, which make them promising for cartilage tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Langer and J. P. Vacanti, Science 260 (5110), 920–926 (1993).

    Article  CAS  Google Scholar 

  2. J. P. Vacanti and R. Langer, Lancet 354 Suppl 1, SI32–34 (1999).

    Article  Google Scholar 

  3. L. Zhang, J. Hu and K. A. Athanasiou, Crit Rev Biomed Eng 37 (1–2), 1–57 (2009).

    Article  Google Scholar 

  4. D. W. Hutmacher, Biomaterials 21 (24), 2529–2543 (2000).

    Article  CAS  Google Scholar 

  5. L. A. Smith and P. X. Ma, Colloids and surfaces. B, Biointerfaces 39 (3), 125–131 (2004).

    Article  CAS  Google Scholar 

  6. H. Yoshimoto, Y. M. Shin, H. Terai and J. P. Vacanti, Biomaterials 24 (12), 2077–2082 (2003).

    Article  CAS  Google Scholar 

  7. L. S. Nair, S. Bhattacharyya and C. T. Laurencin, Expert opinion on biological therapy 4 (5), 659–668 (2004).

    Article  CAS  Google Scholar 

  8. Z. Ma, M. Kotaki, R. Inai and S. Ramakrishna, Tissue engineering 11 (1–2), 101–109 (2005).

    Article  Google Scholar 

  9. A. Thorvaldsson, H. Stenhamre, P. Gatenholm and P. Walkenström, Biomacromolecules 9 (3), 1044–1049 (2008).

    Article  CAS  Google Scholar 

  10. X. Meng, W. Li, F. Young, R. Gao, L. Chalmers, M. Zhao and B. Song, Journal of visualized experiments: JoVE (60) (2012).

  11. I. K. Shim, M. R. Jung, K. H. Kim, Y. J. Seol, Y. J. Park, W. H. Park and S. J. Lee, Journal of Biomedical Materials Research Part B: Applied Biomaterials 95B (1), 150–160 (2010).

    Article  Google Scholar 

  12. L. Chen, C. Zhu, D. Fan, B. Liu, X. Ma, Z. Duan and Y. Zhou, Journal of Biomedical Materials Research Part A 99A (3), 395–409 (2011).

    Article  CAS  Google Scholar 

  13. H. Lee, M. Yeo, S. Ahn, D.-O. Kang, C. H. Jang, H. Lee, G.-M. Park and G. H. Kim, Journal of Biomedical Materials Research Part B: Applied Biomaterials 97B (2), 263–270 (2011).

    Article  Google Scholar 

  14. M. J. Yaszemski, R. G. Payne, W. C. Hayes, R. S. Langer, T. B. Aufdemorte and A. G. Mikos, Tissue engineering 1 (1), 41–52 (1995).

    Article  CAS  Google Scholar 

  15. L. Zhang and T. J. Webster, Nanotoday 4 (1), 66–80 (2009).

    Article  CAS  Google Scholar 

  16. M. C. Phipps, W. C. Clem, J. M. Grunda, G. A. Clines and S. L. Bellis, Biomaterials 33 (2), 524–534 (2012).

    Article  CAS  Google Scholar 

  17. T. J. Shin, S. Y. Park, H. J. Kim, H. J. Lee and J. H. Youk, Biotechnology letters 32 (6), 877–882 (2010).

    Article  CAS  Google Scholar 

  18. D. C. Colter, R. Class, C. M. DiGirolamo and D. J. Prockop, Proc Natl Acad Sci U S A 97 (7), 3213–3218 (2000).

    Article  CAS  Google Scholar 

  19. R. Fang, E. Zhang, L. Xu and S. Wei, Journal of Nanoscience and Nanotechnology 10 (11), 7747–7751 (2010).

    Article  CAS  Google Scholar 

  20. T. Garg, O. Singh, S. Arora and R. Murthy, Critical reviews in therapeutic drug carrier systems 29 (1), 1–63 (2012).

    Article  CAS  Google Scholar 

  21. X. Cui, K. Breitenkamp, M. G. Finn, M. Lotz and D. D. D’Lima, Tissue engineering. Part A 18 (11–12), 1304–1312 (2012).

    Article  CAS  Google Scholar 

  22. J. R. Perera, P. D. Gikas and G. Bentley, Annals of the Royal College of Surgeons of England 94 (6), 381–387 (2012).

    Article  CAS  Google Scholar 

  23. T. Hogervorst, W. Eilander, J. T. Fikkers and I. Meulenbelt, Clinical orthopaedics and related research (2012).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmes, B., Nathan, J.C., Li, J. et al. Novel Biologically Inspired Nanostructured Scaffolds for Directing Chondrogenic Differentiation of Mesenchymal Stem Cells. MRS Online Proceedings Library 1498, 59–66 (2012). https://doi.org/10.1557/opl.2013.181

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2013.181

Navigation