Skip to main content
Log in

Mimicking the Extracellular Matrix: Tuning the Mechanical Properties of Chondroitin Sulfate Hydrogels by Copolymerization with Oligo(ethylene glycol) Diacrylates

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Chondroitin sulfate (CS) is one of the major glycosaminoglycans (GAGs) present in the connective tissue extracellular matrix (ECM) and is responsible for the regulation of cellular activities as well as providing mechanical support for the surrounding tissue. Due to presence of CS in the natural tissues including cartilage, hydrogels of CS and other GAGs have been widely used in cartilage regeneration. Due to their polyelectrolyte nature, GAG-based hydrogels are brittle and require modifications to overcome the weak mechanical properties. In this work, we showed copolymerization of methacrylated chondroitin sulfate with oligo(ethylene glycol)s improved the crosslink density of the gels from 2 to 20 times depending on the methacrylation degree of CS and length of the crosslinking monomer. Copolymerization of CS with oligo(ethylene glycol) acrylates is a method to design hydrogels with tunable swelling and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Balakrishnan and R. Banerjee, Chem. Rev. 111, 4453–4474 (2011).

    Article  CAS  Google Scholar 

  2. S. Van Vlierberghe, P. Dubruel and E. Schacht, Biomacromolecules (2011).

  3. Q. Li, C. G. Williams, D. D. N. Sun, J. Wang, K. Leong and J. H. Elisseeff, J. Biomed. Mater. Res. Part A 68, 28–33 (2004).

    Article  Google Scholar 

  4. C. Cha, S. Y. Kim, L. Cao and H. Kong, Biomaterials 31, 4864–4871 (2010).

    Article  CAS  Google Scholar 

  5. J. M. Mansour, in Kinesiology: the Mechanics and Pathomechanics of Human Movement, ed. C. A. Oatis, Lippincott Williams and Wilkins, Philadelphia, PA, 2nd edn., 2008, vol. 2, pp. 69–83.

    Google Scholar 

  6. A. Forget, J. Christensen, S. Lüdeke, E. Kohler, S. Tobias, M. Matloubi, R. Thomann and V. P. Shastri, Proceedings of the National Academy of Sciences 110, 12887–12892 (2013).

    Article  CAS  Google Scholar 

  7. S. J. Bryant and K. S. Anseth, J. Biomed. Mater. Res. Part A 64, 70–79 (2003).

    Article  Google Scholar 

  8. S. J. Bryant, R. J. Bender, K. L. Durand and K. S. Anseth, Biotechnol. Bioeng. 86, 747–755 (2004).

    Article  CAS  Google Scholar 

  9. D. A. Wang, S. Varghese, B. Sharma, I. Strehin, S. Fermanian, J. Gorham, D. H. Fairbrother, B. Cascio and J. H. Elisseeff, Nat. Mater. 6, 385–392 (2007).

    Article  CAS  Google Scholar 

  10. Q. Li, D. Wang and J. H. Elisseeff, Macromolecules 36, 2556–2562 (2003).

    Article  CAS  Google Scholar 

  11. J. Chen, S. Jo and K. Park, Carbohydr. Polym. 28, 69–76 (1995).

    Article  CAS  Google Scholar 

  12. S. J. Bryant, J. A. Arthur and K. S. Anseth, Acta Biomater. 1, 243–252 (2005).

    Article  Google Scholar 

  13. G. C. Ingavle, N. H. Dormer, S. H. Gehrke and M. S. Detamore, Journal of Materials Science: Materials in Medicine, 1-14 (2012).

  14. A. Khanlari, M. S. Detamore and S. H. Gehrke, Submitted to Macromolecules (2013).

  15. T. C. Suekama, J. Hu, T. Kurokawa, J. P. Gong and S. H. Gehrke, ACS Macro Lett. 2, 137–140 (2013).

    Article  CAS  Google Scholar 

  16. T. C. Suekama, C. Berkland and S. H. Gehrke in Interpenetrating network hydrogels based on poly (N-vinylformamide) and polyacrylamide with controlled charge complexation, (245, 2013)

  17. G. C. Ingavle, A. W. Frei, S. H. Gehrke and M. S. Detamore, Tissue Eng., Part A 19, 1349–1359 (2013).

    Article  CAS  Google Scholar 

  18. L. R. G. Treloar, The Physics of Rubber Elasticity, Oxford University Press, New York, NY, (Oxford University Press, 2009).

    Google Scholar 

  19. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, (Cornell University Press, 1953).

    Google Scholar 

  20. J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar and A. Khademhosseini, Biomaterials 31, 5536–5544 (2010).

    Article  CAS  Google Scholar 

  21. S. A. Bencherif, A. Srinivasan, F. Horkay, J. O. Hollinger, K. Matyjaszewski and N. R. Washburn, Biomaterials 29, 1739–1749 (2008).

    Article  CAS  Google Scholar 

  22. C. A. Bonino, J. E. Samorezov, O. Jeon, E. Alsberg and S. A. Khan, Soft Matter 7, 11510–11517 (2011).

    Article  CAS  Google Scholar 

  23. W. D. Cook, J. Polym. Sci., Part A: Polym. Chem. 31, 1053–1067 (1993).

    Article  CAS  Google Scholar 

  24. D. Landin and C. Macosko, Macromolecules 21, 846–851 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anahita Khanlari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanlari, A., Suekama, T.C., Detamore, M.S. et al. Mimicking the Extracellular Matrix: Tuning the Mechanical Properties of Chondroitin Sulfate Hydrogels by Copolymerization with Oligo(ethylene glycol) Diacrylates. MRS Online Proceedings Library 1622, 189–195 (2013). https://doi.org/10.1557/opl.2013.1207

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2013.1207

Navigation