Skip to main content
Log in

Theory of Fluid Lubrication of Hydrogels and Articular Cartilage during Compression Under an Applied Load

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A fluid lubrication model for articular cartilage was put forward by Mc Cutchen, in which a high percentage of the load is supported by fluid pressurization in the interface region separating the two cartilage coated surfaces as the cartilage is compressed under load. This reduces the friction by reducing the percentage of the load which is carried by solid material in the cartilage. For two bones which are in contact in a healthy joint, which are each coated by a layer of cartilage whose thickness is much smaller than its lateral dimensions, it will be argued that since the bone is impervious to fluid flow in healthy joints, almost all of the fluid that is expressed from the cartilage under load flows through the interface region, where it supports part of the load. This is in contrast to previous theoretical and in vitro experimental studies of this problem, in which most of the fluid does not flow into the interface. It is shown that for mean asperity height small compared to a length scale (which depends on the cartilage or hydrogel permeability, the fluid viscosity and the dimensions of the cartilage or hydrogel) a large percentage of the load is supported by fluid pressurization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Oogaki., F. Kagata, T. Kurokawa, S. Kuroda, Y. Osada, and J. P. Gong, Soft Matter 5(9), 1804–1811 (2009).

    Article  Google Scholar 

  2. J. P. Gong, 2006, Soft Matter 2, 544–552 (2006).

    Article  CAS  Google Scholar 

  3. J. P. Gong and Y. Osada, Journal of Chemical Physics 109, 8062–8068 (1998).

    Article  CAS  Google Scholar 

  4. J. P. Gong, G. Kagata and Y. Osada, J. Phys. Chem B 103, 6007–6014 (1999).

    Article  CAS  Google Scholar 

  5. J. B. Sokoloff, Soft Matter 6, 3856–3862 (2010).

    Article  CAS  Google Scholar 

  6. J. B. Sokoloff, Journal of Physical Chemistry B 115, 2709–2716 (2010).

    Article  Google Scholar 

  7. G. Meachim and R. Stockwell, in “Adult Articular Cartilage,” ed. M. R. R. Freeman (Pitman Medical Publishing, Kent, England, 1979), p. 1.

  8. I. H. M. Muir, in “Adult Articular Cartilage,” ed. M. R. R. Freeman (Pitman Medical Publishing, Kent, England, 1979), p. 145.

  9. W. A. Hodge, R. S. Fijan, K. L. Carlson, R. G. Burgess, W. H. Harris and R. W. Mann, Proc. Natl. Acad. Sci. 83, 2879–2883 (1986).

  10. J. P. G. Urban, A., M. Maroudas, M. T. Bayliss and J. Dillon, Biorheology 16, 447–464 (1979).

    Article  CAS  Google Scholar 

  11. A. Maroudas and C. Bannon, Biorheology 18, 619–632 (1981).

    Article  CAS  Google Scholar 

  12. C. W. McCutchen, “Sponge Hydrostatic and Weeping Bearings,” Nature 184, 1284 (1959).

    Article  CAS  Google Scholar 

  13. C. W. McCutchen, Wear 5, 1–17 (1962).

    Article  Google Scholar 

  14. C. W. McCutchen, Fed. Proc. 25, 1061 (1966).

  15. G. A. Ateshian, J. Biomechanical Engineering 110, 81–86 (1997).

    Article  Google Scholar 

  16. G. A. Ateshian, J. Biomechanics 42, 1163–1176 (2009).

    Article  Google Scholar 

  17. R. Krishnan, E.N. Marinar, G. A. Ateshian, J. Biomechanics 38, 1665–1673 (2005).

    Article  Google Scholar 

  18. M. A. Soltz, I. M. Basalo and G. A. Ateshan, J. Biomechanical Engineering 125, 585–593 (2003).

    Article  Google Scholar 

  19. V. C. Mow, S. C. Kuei, W. M. Lai, C. G. Armstrong, J. Biomechanical Engineering 102, 73–84 (1980); V. C. Mow and J. M. Mansour, J. Biomechanics 10, 31–39(1977).

    Article  CAS  Google Scholar 

  20. M. Hlavcek, J. Biomechanics 33, 1415–1422 (2000).

    Article  Google Scholar 

  21. B. N. J. Persson, “Sliding Friction: Physical Principles and Applications,” second edition (Springer, New York), pp. 123–124 (2000).

    Book  Google Scholar 

  22. Jennifer Hwang, Won C. Bae, Wendy Shieu, Chad W. Lewis, William D. Bugbee, and Robert L. Sah, 58, 3831–3842 (2008).

  23. F. Brochard and P. G. deGennes, Macromolecules 10, 1157 (1977).

    Article  CAS  Google Scholar 

  24. J. A. Greenwood and J. B. P. Williamson, J. B. P., Proc. Roy. Soc. London, series A, Mathematical and Physical Sciences, 295, 300–319 (1966).

  25. A. W. Bush, R.D. Gibson, T. R. Thomas, Wear 35, 87 (1975).

    Article  Google Scholar 

  26. B. N. J. Persson and C. Yang, J. Phys.:Condens. Matter 20, 315011 (2008); C. Yang and B. N. J. Persson, J. Phys.:Condens. Matter 20, 215214(2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokoloff, J.B. Theory of Fluid Lubrication of Hydrogels and Articular Cartilage during Compression Under an Applied Load. MRS Online Proceedings Library 1418, 39–44 (2012). https://doi.org/10.1557/opl.2012.99

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2012.99

Navigation