Skip to main content
Log in

The Underlying Chemistry of Self-Healing Materials

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Over the past ten years, a broad range of self-healing materials, systems that can detect when they have been damaged and heal themselves either spontaneously or with the aid of a stimulus, has emerged. Although many unique compositions and components are used to create these materials, they all employ basic chemical reactions to facilitate repair processes. Kinetically controlled ring-opening reactions and reversible metal–ligand interactions have proven useful in autonomic self-healing materials, which require no stimulus (other than the formation of damage) for operation. In contrast, nonautonomic self-healing materials, which require some type of externally applied stimulus (such as heat or light) to enable healing functions, have capitalized on chemistries that utilize either reversible covalent bonds or various types of noncovalent interactions. This review describes the underlying chemistries used in state-of-the-art self-healing materials, as well as those currently in development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Martin, Science 276 75 (1997).

    Google Scholar 

  2. S.D. Bergman, F. Wudl, J. Mater. Chem. 18, 41 (2008).

    Google Scholar 

  3. S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, S. Viswanathan, Nature 409, 794 (2001).

    Google Scholar 

  4. Y. Chauvin, Angew. Chem. Int. Ed. 45, 3741 (2006).

    Google Scholar 

  5. R.R. Schrock, Angew. Chem. Int. Ed. 45, 3748 (2006).

    Google Scholar 

  6. R.H. Grubbs, Angew. Chem. Int. Ed. 45, 3760 (2006).

    Google Scholar 

  7. C.W. Bielawski, R.H. Grubbs, Prog. Polym. Sci. 32, 1 (2007).

    Google Scholar 

  8. M.W. Keller, S.R. White, N.R. Sottos, Adv. Funct. Mater. 17, 2399 (2007).

    Google Scholar 

  9. S.H. Cho, H.M. Andersson, S.R. White, N.R. Sottos, P. V. Braun, Adv. Mater. 18, 997 (2006).

    Google Scholar 

  10. M.M. Caruso, D.A. Delafuente, V. Ho, N.R. Sottos, J.S. Moore, S.R. White, Macromolecules 40, 8830 (2007).

    Google Scholar 

  11. K.S. Toohey, N.R. Sottos, J.A. Lewis, J.S. Moore, S.R. White, Nat. Mater. 6, 581 (2007).

    Google Scholar 

  12. J.W.C. Pang, I.P. Bond, Composites A 36, 183 (2005).

    Google Scholar 

  13. J.W.C. Pang, I.P Bond, Compos. Sci. Technol. 65, 1791 (2005).

    Google Scholar 

  14. R.S. Trask, I.P Bond, Smart Mater. Struct. 15, 704 (2006).

    Google Scholar 

  15. F.R. Kersey, D.M. Loveless, S.L. Craig, J. R. Soc. Interface 4, 373 (2007).

    Google Scholar 

  16. P. Cordier, F. Tournilhac, C. Soulié-Ziakovic, L. Leibler, Nature 451, 977 (2008).

    Google Scholar 

  17. J.-M. Lehn, Prog. Polym. Sci. 30, 814 (2005).

    Google Scholar 

  18. R.P. Sijbesma, F.H. Beijer, L. Brunsveld, B.J.B. Folmer, J.H.K.K. Hirschberg, R.F.M. Lange, J.K.L. Lowe, E.W. Meijer, Science 278, 1601 (1997).

    Google Scholar 

  19. X. Chen, M.A. Dam, K. Ono, A. Mal, H. Shen, S.R. Nutt, K. Sheran, F. Wudl, Science 295, 1698 (2002).

    Google Scholar 

  20. X. Chen, F. Wudl, A.K. Mal, H. Shen, S.R. Nutt, Macromolecules 36, 1802 (2003).

    Google Scholar 

  21. J.W. Kamplain, C.W. Bielawski, Chem. Commun. 1727 (2006).

  22. W. Niu, C. O’Sullivan, B.M. Rambo, M.D. Smith, J.J. Lavigne, Chem. Commun. 4342 (2005).

  23. S.A. Hayes, F.R. Jones, K. Marshiya, W. Zhang, Composites A. 38, 1116 (2007).

    Google Scholar 

  24. C.-M. Chung, Y.-S. Roh, S.-Y. Cho, J.-G. Kim, Chem. Mater. 16, 3982 (2004).

    Google Scholar 

  25. T.F. Scott, A.D. Schneider, W.D. Cook, C.N. Bowman, Science 308, 1615 (2005).

    Google Scholar 

  26. R.H. Huyck, S.R. Trenor, B.J. Love, T.E. Long, J. Macromol. Sci. A 40, 9 (2008).

    Google Scholar 

  27. K.A. Williams, A.J. Boydston, C.W. Bielawski, Chem. Soc. Rev. 36, 729 (2007).

    Google Scholar 

  28. J.M.J. Paulusse, J.P.J. Huijbers, R.P. Sijbesma, Chem. Eur. J. 12, 4928 (2006).

    Google Scholar 

  29. C.-F. Chow, S. Fujii, J.-M. Lehn, Angew. Chem., Int. Ed. 46, 5007 (2007).

    Google Scholar 

  30. J.B. Beck, S.J. Rowan, J. Am. Chem. Soc. 125, 13922 (2003).

    Google Scholar 

  31. Y. Zhao, J.B. Beck, S.J. Rowan, A.M. Jamieson, Macromolecules 37, 3529 (2004).

    Google Scholar 

  32. A.J. Boydston, K.A. Williams, C.W. Bielawski, J. Am. Chem. Soc. 127, 12496 (2005).

    Google Scholar 

  33. H. Shirakawa, Angew. Chem., Int. Ed. 40, 2574 (2000).

    Google Scholar 

  34. K.A. Williams, A.J. Boydston, C.W. Bielawski, J. R. Soc. Interface 4, 359 (2007).

    Google Scholar 

  35. R. Varley, in Self-Healing Materials. An Alternative Approach to 20 Centuries of Materials Science, S. van der Zwaag, Ed. (Springer, Dordrecht, The Netherlands, 2007), p. 95.

    Google Scholar 

  36. A. Eisenberg, J.-S. Kim, Introduction to Ionomers (Wiley, New York, 1998).

    Google Scholar 

  37. K. Tadano, E. Hirosawa, H. Yamamoto, S. Yano, Macromolecules 22, 226 (1989).

    Google Scholar 

  38. S.J. Kalista, T.C. Ward, Z. Oyetunji, Mech. Adv. Mater. Struct. 14, 391 (2007).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, K.A., Dreyer, D.R. & Bielawski, C.W. The Underlying Chemistry of Self-Healing Materials. MRS Bulletin 33, 759–765 (2008). https://doi.org/10.1557/mrs2008.162

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2008.162

Navigation