Skip to main content
Log in

Use of Nanotechnologies for Drug Delivery

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The emerging field of nanotechnology has an enormous potential contribution to make to the field of pharmaceutical materials science. The advantages of drug nanoparticles can be as simple as dissolution rate enhancement through increased surface area or as complex as targeted delivery through novel pathways. However, the application of many nanoscale technologies has been slow because of difficulties controlling the drug form with decreasing particle size and maintaining chemical and physical stability upon storage. Advancing beyond these limitations requires a unique understanding of both the material properties of the active ingredients as well as the physical chemistry of the nano-sized particle. This article will examine the current challenges facing the pharmaceutical industry in applying nanotechnology, with a focus on the deficiencies in understanding that need to be addressed to move forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Noyes and W.R. Whitney, J. Am. Chem. Soc. 19 (1897) p. 930.

    Google Scholar 

  2. Z.L. Wang, J.M. Petroski, T.C. Green, and M.A. El-Sayed, J. Phys. Chem. B 102 (32) (1998) p. 6145.

    Google Scholar 

  3. M. Wautelet, Phys. Lett. A 246 (1998) p. 341.

    Google Scholar 

  4. R. Muller and K. Peters, Inter. J. Pharm. 160 (1998) p. 229.

    Google Scholar 

  5. Z. Zhang, H.X. Shi, and Q. Jiang, Mater. Lett. 44 (2000) p. 261.

    Google Scholar 

  6. T.M. Allen and P.R. Cullis, Science 303 (2004) p. 1818.

    Google Scholar 

  7. J.K. Vasir, M.K. Reddy, and V.D. Labhasetwar, Curr. Nanosci. 1 (2005) p. 47.

    Google Scholar 

  8. J. Davda and V. Labhasetwar, Int. J. Pharm. 233 (2002) p. 51.

    Google Scholar 

  9. A. Nel, T. Xia, L. Madler, and M. Li, Science 311 (2006) p. 622.

    Google Scholar 

  10. J. Israelachvili, Intermolecular & Surface Forces, 2nd ed. (Academic Press, San Diego, 1992).

    Google Scholar 

  11. C.M. Keck and R.H. Muller, Euro. J. Pharm. Biopharm. 62 (2006) p. 3.

    Google Scholar 

  12. G.G. Liversidge and K.C. Cundy, Int. J. Pharm. 125 (1995) p. 91.

    Google Scholar 

  13. E. Merisko-Liversidge, G.G. Liversidge, and E.R. Cooper, Euro. J. Pharm. Sci. 18 (2003) p. 113.

    Google Scholar 

  14. U. Shah, C. Vemavarapu, V. Askins, M. Lodaya, P. Elzinga, J. Matthew, and J. Mollan, Pharm. Technol. 30 (3) (2006) p. 96.

    Google Scholar 

  15. U. Shah, C. Vemavarapu, C.C. Galli, M.P. Lodaya, M.J. Mollan Jr., and W.M. Polak, “Preparation of Pharmaceutical Compositions Containing Nanoparticles,” Patent No. WO2006003504 (January 12, 2006).

  16. M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, and R. Whyman, Chem. Commun. (1994) p. 801.

  17. C.B. Murray, D.J. Norris, and M.G. Bawendi, J. Am. Chem. Soc. 115 (1993) p. 8706.

    Google Scholar 

  18. U. Bilati, E. Allémann, and E. Doelker, Euro. J. Pharm. Biopharm. 24 (1) (2005) p. 67.

    Google Scholar 

  19. B. Jiang, L. Hu, C. Gao, and J. Shen, Int. J. Pharm. 304 (2005) p. 220.

    Google Scholar 

  20. J.W. Tom and P.G. Debenedetti, J. Aerosol Sci. 22 (1991) p. 555.

    Google Scholar 

  21. P.S. Shah, S. Husain, K.P. Johnston, and B.A. Korgel, J. Phys. Chem. B 106 (2002) p. 12178.

    Google Scholar 

  22. J.D. Holmes, P.A. Bhargava, B.A. Korgel, and K.P. Johnston, Langmuir 15 (20) (1999) p. 6613.

    Google Scholar 

  23. Y.-P. Sun, P. Atorngitjawat, and M.J. Meziani, Langmuir 17 (2001) p. 5707.

    Google Scholar 

  24. P.S. Shah, T. Hanrath, K.P. Johnston, and B.A. Korgel, J. Phys. Chem. B 108 (28) (2004) p. 9574.

    Google Scholar 

  25. C. Vemavarapu, M.J. Mollan, M. Lodaya, and T.E. Needhamb, Int. J. Pharm. 292 (2005) p. 1.

    Google Scholar 

  26. P. Pathak, M.J. Meziani, T. Desai, and Y.-P. Sun, J. Am. Chem. Soc. 126 (2004) p. 10842.

    Google Scholar 

  27. R. Thakur and R.B. Gupta, Int. J. Pharm. 308 (2006) p. 190.

    Google Scholar 

  28. T.J. Young, S. Mawson, K.P. Johnston, I.B. Henriksen, G.W. Pace, and A.K. Mishra, Biotechnol. Progr. 16 (2000) p. 402.

    Google Scholar 

  29. R.T. Bustami, H.-K. Chan, F. Dehghani, and N.R. Foster, Pharm. Res. 17 (2000) p. 1360.

    Google Scholar 

  30. P. Chattopadhyay and R.B. Gupta, AIChE J. 48 (2002) p. 235.

    Google Scholar 

  31. E. Reverchon and G.D. Porta, Powder Technol. 106 (1999) p. 23.

    Google Scholar 

  32. M.C. Jones and J.C. Leroux, Euro. J. Pharm. Biopharm. 48 (1999) p. 101.

    Google Scholar 

  33. P. Chattopadhyay, R. Huff, and B.Y. Shekunov, J. Pharm. Sci. 95 (2006) p. 667.

    Google Scholar 

  34. M.P. Pileni, Langmuir 13 (1997) p. 3266.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, P. Use of Nanotechnologies for Drug Delivery. MRS Bulletin 31, 894–899 (2006). https://doi.org/10.1557/mrs2006.209

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.209

Keywords

Navigation