Skip to main content
Log in

Nanopatterning with UV Optical Lithography

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Optical lithography at ultraviolet (UV) wavelengths is the standard process for patterning 90-nm state-of-the-art devices in the semiconductor industry, and extensions to 45 nm and below are currently being explored. With such high resolution, the inherent high throughput of optical lithography will enable the development of a broad range of applications beyond semiconductor electronics. In this article, we will review progress toward nanopatterning with UV light in a variety of materials and geometries.The common thread is the use of short wavelengths, 193 nm or 157 nm, coupled with immersion to further reduce the effective wavelength. Densely spaced, 32-nm (and even smaller) features have been patterned, facilitating the future preparation of large-area, deeply scaled microelectronics, nanophotonics, nanobiology, and molecular-scale self-assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors, 2003 Edition: Lithography, http://public.itrs.net/Files/2003ITRS/Home2003.htm (accessed November 2005); International Technology Roadmap for Semiconductors, 2004 Update: Lithography, www.itrs.net/Common/2004Update/2004_07_Lithography.pdf (accessed November 2005).

  2. M. Born and E. Wolf, Principles of Optics, 5th ed., Ch. IX (Pergamon Press, Oxford, 1975).

    Google Scholar 

  3. M. Fritze, C.K. Chen, D.K. Astolfi, D.R. Yost, J.A. Burns, C.-L. Chen, P.M. Gouker, V. Suntharalingam, P.W. Wyatt, and C.L. Keast, IEEE Circuits and Devices Magazine 19 (1) (2003) p. 43.

    Article  Google Scholar 

  4. M. Fritze, R. Mallen, B. Wheeler, D. Yost, J.P. Snyder, B. Kasprowicz, B. Eynon, and H.Y. Liu, Proc. SPIE 5040 (2003) p. 327.

    Article  Google Scholar 

  5. T. Matsuyama, T. Ishiyama, and Y. Ohmura, Proc. SPIE 5377 (2004) p. 730.

    Article  Google Scholar 

  6. A. Namba, S. Uzawa, and K. Kotoku, Proc. SPIE 5377 (2004) p. 758.

    Article  Google Scholar 

  7. S.-H. Hsu, S.-P. Fang, I.H. Huang, B.S.-M. Lin, and K.-C. Hung, Proc. SPIE 5377 (2004) p. 1214.

    Article  Google Scholar 

  8. T.M. Bloomstein, M.W. Horn, M. Rothschild, R.R. Kunz, S.T. Palmacci, and R.B. Goodman, J. Vac. Sci. Technol. B 15 (1997) p. 2112.

    Article  CAS  Google Scholar 

  9. V. Liberman, T.M. Bloomstein, M. Rothschild, J.H.C. Sedlacek, R.S. Uttaro, A.K. Bates, C. Van Peski, and K. Orvek, J. Vac. Sci. Technol. B 17 (1999) p. 3273.

    Article  CAS  Google Scholar 

  10. J.T. Kohli, Q. Li, and W.R. Rosch, Proc. SPIE 5377 (2004) p. 1735.

    Article  CAS  Google Scholar 

  11. G. Grabosch, L. Parthier, P. Kruell, and K. Knapp, Proc. SPIE 5377 (2004) p. 1781.

    Article  CAS  Google Scholar 

  12. U. Okoroanyanwu, R. Gronheid, J. Coenen, J. Hermans, and K.G. Ronse, Proc. SPIE 5377 (2004) p. 1695.

    Article  CAS  Google Scholar 

  13. F.M. Houlihan, R. Sakamuri, A. Romano, D. Rentkiewicz, R. Dammel, W. Conley, D. Miller, M. Sebald, N. Stepanenko, M. Markert, U. Mierau, I. Vermeir, C. Hohle, T. Itani, M. Shigematsu, and E. Kawaguchi, Proc. SPIE 5376 (2004) p. 134.

    Article  CAS  Google Scholar 

  14. W. Li, P. Rao Varanasi, M.C. Lawson, R.W. Kwong, K.-J. Chen, H. Ito, H. Truong, R.D. Allen, M. Yamamoto, E. Kobayashi, and M. Slezak, Proc. SPIE 5039 (2003) p. 61.

    Article  CAS  Google Scholar 

  15. A. Grenville, V. Liberman, M. Rothschild, J.H.C. Sedlacek, R.H. French, R.C. Wheland, X. Zhang, and J. Gordon, Proc. SPIE 4691 (2002) p. 1644.

    Article  CAS  Google Scholar 

  16. R. French, R.C. Wheland, W. Qiu, M.F. Lemon, G.S. Blackman, E. Zhang, J. Gordon, V. Liberman, A. Grenville, R.R. Kunz, and M. Rothschild, Proc. SPIE 4691 (2002) p. 576.

    Article  CAS  Google Scholar 

  17. M. Switkes and M. Rothschild, Proc. SPIE 4691 (2002) p. 459.

    Article  CAS  Google Scholar 

  18. J.H. Burnett and S.G. Kaplan, J. Microlith. Microfab. Microsyst. 3 (2004) p. 68.

    CAS  Google Scholar 

  19. B.-J. Lin, Proc. SPIE 5377 (2004) p. 46.

    Article  CAS  Google Scholar 

  20. S. Owa, H. Nagasaka, Y. Ishii, O. Hirakawa, and T. Yamamoto, Proc. SPIE 5377 (2004) p. 264.

    Article  Google Scholar 

  21. B. Streefkerk, J. Baselmans, W. Gehoel-van Ansem, J. Mulkens, C. Hoogendam, M. Hoogendorp, D. Flagello, H. Sewell, and P. Graeupner, Proc. SPIE 5377 (2004) p. 285.

    Article  Google Scholar 

  22. T. Honda, Y. Kishikawa, T. Tokita, H. Ohsawa, M. Kawashima, A. Ohkubo, M. Yoshii, and A. Suzuki, Proc. SPIE 5377 (2004) p. 319.

    Article  Google Scholar 

  23. W. Hinsberg, G.M. Wallraff, C.E. Larson, B.W. Davis, V. Deline, S. Raoux, D. Miller, F.A. Houle, J. Hoffnagle, M.I. Sanchez, C. Rettner, and L.K. Sundberg, Proc. SPIE 5376 (2004) p. 21.

    Article  CAS  Google Scholar 

  24. D. Gil, T. Brunner, C. Fonseca, N. Song, B. Streefkerk, C. Wagner, and M. Stavenga, J. Vac. Sci. Technol. B 22 (2004) p. 3431.

    Article  CAS  Google Scholar 

  25. V. Liberman, S.T. Palmacci, D.E. Hardy, M. Rothschild, and A. Grenville, Proc. SPIE 5754 (2005) p. 148.

    CAS  Google Scholar 

  26. T. Brunner, N. Seong, W.D. Hinsberg, J.A. Hoffnagle, F.A. Houle, and M.I. Sanchez, Proc. SPIE 4691 (2002) p. 1.

    Article  Google Scholar 

  27. B. Smith and J. Cashmore, Proc. SPIE 4691 (2002) p. 11.

    Article  CAS  Google Scholar 

  28. S. Peng, R.H. French, W. Qiu, R.C. Wheland, M. Yang, M.F. Lemon, and M.K. Crawford, Proc. SPIE 5754 (2005) p. 427.

    CAS  Google Scholar 

  29. J. Burnett, S.G. Kaplan, E.L. Shirley, P.J. Tompkins, and J.E. Webb, Proc. SPIE 5754 (2005) p. 611.

    CAS  Google Scholar 

  30. M. Rothschild, T.M. Bloomstein, R.R. Kunz, V. Liberman, M. Switkes, S.T. Palmacci, J.H.C. Sedlacek, D. Hardy, and A. Grenville, J. Vac. Sci. Technol. B 22 (2004) p. 2877.

    Article  CAS  Google Scholar 

  31. R.A. Synowicki, G.K. Pribil, G. Cooney, C.M. Herzinger, S.E. Green, R.H. French, M.K. Yang, J.H. Burnett, and S. Kaplan, J. Vac. Sci. Technol. B 22 (2004) p. 3450.

    Article  CAS  Google Scholar 

  32. M. Switkes, T.M. Bloomstein, M. Rothschild, E.W. Arriola, and T.H. Morrison, Proc. SPIE 5754 (2005) p. 237.

    Google Scholar 

  33. A. Yen, E.H. Anderson, R.A. Ghanbari, M.L. Schattenburg, and H.I. Smith, Appl. Opt. 31 (1992) p. 4540.

    Article  CAS  Google Scholar 

  34. T.A. Savas, M.L. Schattenburg, J.M. Carter, and H.I. Smith, J. Vac. Sci. Technol. B 14 (1996) p. 4167.

    Article  CAS  Google Scholar 

  35. J.A. Hofnagle, W.D. Hinsberg, M. Sanchez, and F.A. Houle, J. Vac. Sci. Technol. B 17 (1999) p. 3306.

    Article  Google Scholar 

  36. M. Switkes, T.M. Bloomstein, and M. Rothschild, Appl. Phys. Lett. 77 (2000) p. 3149.

    Article  CAS  Google Scholar 

  37. M. Switkes and M. Rothschild, J. Vac. Sci. Technol. B 19 (2001) p. 2353.

    Article  CAS  Google Scholar 

  38. T.M. Bloomstein, P.W. Juodawlkis, R.B. Swint, S.G. Cann, S J. Deneault, N.N. Efremow Jr., D.E. Hardy, M.F. Marchant, A. Napoleone, D.C. Oakley, M. Rothschild, and P. Brooker, J. Vac. Sci. Technol. B 23 (2005).

  39. M. Fritze, B. Tyrrell, T.H. Fedynyshyn, and M. Rothschild, Proc. SPIE 5751 (2005) p. 1058.

    Article  CAS  Google Scholar 

  40. M. Fritze, T.M. Bloomstein, B. Tyrrell, T.H. Fedynyshyn, N.N. Efremow Jr., D.E. Hardy, S. Cann, D. Lennon, S. Spector, and M. Rothschild, J. Vac. Sci. Technol. B 23 (2005).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothschild, M., Bloomstein, T.M., Efremow, N. et al. Nanopatterning with UV Optical Lithography. MRS Bulletin 30, 942–946 (2005). https://doi.org/10.1557/mrs2005.247

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2005.247

Keywords

Navigation