Skip to main content
Log in

Molecular Memories Based on a CMOS Platform

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Hybrid complementary metal oxide semiconductor (CMOS)/molecular memory devices are based on a dynamic random-access memory (DRAM) architecture, are fast, have high density, and exhibit low power consumption. These devices use a well-characterized charge storage mechanism to store information based on the intrinsic properties of molecules attached to a CMOS platform. The molecules are designed in a rational way to have known electrical properties and can be incorporated into CMOS devices with only minor modification of existing fabrication methods. Each memory element contains a monolayer of molecules (typically 100,000–1,000,000) to store charge; this process yields a structure that has many times the charge density of a typical DRAM capacitor, obviating the necessity for a trench or stacked capacitor geometry. The magnitude of voltage required to remove each electron is quantized (typically a few hundred millivolts per state), making it much easier to put molecules in a known state and to detect that state with low-power operation. Existing devices have charge retention times that are >1000 times that of semiconductors, and nonvolatile strategies based on simple modifications of existing systems are possible. All of these devices are ultimately scalable to molecular dimensions and will enable the production of memory products as small as state-of-the-art lithography will allow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Kwok and J.C. Ellenbogen Mater. Today (February 2002) p. 28.

    Google Scholar 

  2. R.F. Service Science 302 (2003) p. 556.

    Article  CAS  Google Scholar 

  3. International Technology Roadmap for Semiconductors (ITRS) (Semiconductor Industry Association, San Jose, CA, 2002).

  4. Z. Liu A.A. Yasseri J.S. Lindsey and D.F. Bocian Science 302 (2003) p. 1543.

    Article  CAS  Google Scholar 

  5. K.M. Roth N. Dontha R.B. Dabke D.T. Gryko C. Clausen J.S. Lindsey D.F. Bocian and W.G. Kuhr J. Vac. Sci. Technol., B 18 (2000) p. 2359.

    Article  CAS  Google Scholar 

  6. C. Clausen D.T. Gryko A.A. Yasseri J.R. Diers D.F. Bocian W.G. Kuhr and J.S. Lindsey J. Org. Chem. 65 (2000) p. 7371.

    Article  CAS  Google Scholar 

  7. D.T. Gryko P.C. Clausen and J.S. Lindsey J. Org. Chem. 64 (1999) p. 8635.

    Article  CAS  Google Scholar 

  8. D.T. Gryko J. Li J.R. Diers K.M. Roth D.F. Bocian W.G. Kuhr and J.S. Lindsey J. Mat. Chem. 11 (2001) p. 1162

    Article  CAS  Google Scholar 

  9. K.-H. Schweikart, V.L. Malinovskii, J.R. Diers, A.A. Yasseri, D.F. Bocian, W.G. Kuhr, and J.S. Lindsey, J. Mat. Chem. 12 (2002) p. 808.

    Article  CAS  Google Scholar 

  10. K.M. Roth Z. Liu D.T. Gryko C. Clausen J.S. Lindsey D.F. Bocian and W.G. Kuhr ACS Symp. Series 844 (2003) p. 51; K.M. Roth, J.S. Lindsey, D.F. Bocian, and W.G. Kuhr, Langmuir 18 (2002) p. 4030

    Article  CAS  Google Scholar 

  11. K.M. Roth, D.T. Gryko, C. Clausen, J. Li, J.S. Lindsey, W.G. Kuhr, and D.F. Bocian, J. Phys. Chem. B 106 (2002) p. 8639.

    Article  CAS  Google Scholar 

  12. K.M. Roth A.A. Yasseri, Z. Liu V. Malinovskii K.-H. Schweikart, L. Yu H. Tiznado F. Zaera J.S. Lindsey, W.G. Kuhr, and D.F. Bocian, J. Amer. Chem. Soc. 125 (2003) p. 505.

    Article  CAS  Google Scholar 

  13. Q. Li G. Mathur M. Homsi S. Surthi V. Misra V. Malinovskii K.-H. Schweikart, L. Yu J.S. Lindsey, Z. Liu R.B. Dabke, A. Yasseri D.F. Bocian, and W.G. Kuhr, Appl. Phys. Lett. 81 (2002) p. 1494

    Article  CAS  Google Scholar 

  14. Q. Li, S. Surthi, G. Mathur, S. Gowda, M. Kannan, S. Tamaru, J.S. Lindsey, Z. Liu, R.B. Dabke, A. Yasseri, D.F. Bocian, W.G. Kuhr, T.A. Sorenson, R.C. Tenent, and V. Misra, Appl. Phys. Lett. 83 (2003) p. 198.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhr, W.G., Gallo, A.R., Manning, R.W. et al. Molecular Memories Based on a CMOS Platform. MRS Bulletin 29, 838–842 (2004). https://doi.org/10.1557/mrs2004.238

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.238

Keywords

Navigation