Skip to main content
Log in

Molecular Electronics: Theory and Device Prospects

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Understanding current flow through molecular conductors involves simulating the contact surface physics, the molecular chemistry, the device electrostatics, and the quantum kinetics of nonequilibrium transport, along with more sophisticated processes such as scattering and many-body effects.We summarize our current theoretical understanding of transport through such nanoscale devices. Our approach is based on self-consistently combining the nonequilibrium Green’s function (NEGF) formulation of transport with an electronic structure calculation of the molecule.We identify the essential ingredients that go into such a simulation. While experimental data for many of the inputs required for quantitative simulation are still evolving, the general framework laid down in this treatment should still be applicable.We use these concepts to examine a few prototype molecular devices, such as wires, transistors, and resonant-tunneling diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bourianoff, Computer 36 (2003) p. 44

    Article  Google Scholar 

  2. S. Thompson, N. Anand, M. Armstrong, C. Auth, B. Arcot, M. Alavi, P. Bai, J. Bielefeld, R. Bigwood, J. Brandenburg, M. Buehler, S. Cea, V. Chikarmane, C. Choi, R. Frankovic, T. Ghani, G. Glass, W. Han, T. Hoffmann, M. Hussein, P. Jacob, A. Jain, C. Jan, S. Joshi, C. Kenyon, J. Klaus, S. Klopcic, J. Luce, Z. Ma, B. McIntyre, K. Mistry, A. Murthy, P. Nguyen, H. Pearson, T. Sandford, R. Schweinfurth, R. Shaheed, S. Sivakumar, M. Taylor, B. Tufts, C. Wallace, P. Wang, C. Weber, and M. Bohr, in IEDM Tech. Dig. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2002) p. 61.

    Google Scholar 

  3. B. Doris, M. Ieong, T. Kanarsky, Y. Zhang, R.A. Roy, O. Dokumaci, Z. Ren, F.-F. Jamin, L. Shi, W. Natzle, H.-J. Huang, J. Mezzapelle, A. Mocuta, S. Womack, M. Gribelyuk, E.C. Jones, R.J. Miller, H.-S.P. Wong, and W. Haensch, in IEDM Tech. Dig. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2002) p. 267.

    Google Scholar 

  4. D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, and H.-S.P. Wong, in Proc. IEEE 89 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2001) p. 259.

    Article  CAS  Google Scholar 

  5. M. Lundstrom, Science 299 (2003) p. 210.

    Article  CAS  Google Scholar 

  6. For a recent review, see A. Nitzan and M.A. Ratner, Science 300 (2003) p. 1384.

  7. See A.W. Ghosh and S. Datta, J. Comput. Electron. 1 (2002) p. 515 and references therein.

    Article  CAS  Google Scholar 

  8. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, UK, 1995).

    Book  Google Scholar 

  9. H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer-Verlag, Berlin, 1996).

    Google Scholar 

  10. A. Nitzan, J. Phys. Chem. A 105 (2001) p. 2677.

    Article  CAS  Google Scholar 

  11. G.-C. Liang, A.W. Ghosh, M. Paulsson, and S. Datta, Phys. Rev. B 69 (2004) p. 115302.

    Article  Google Scholar 

  12. S. Datta, W. Tian, S. Hong, R. Reifenberger, J.I. Henderson, and C.P. Kubiak, Phys. Rev. Lett. 79 (1997) p. 2530

    Article  CAS  Google Scholar 

  13. W. Tian, S. Datta, S. Hong, R. Reifenberger, J.I. Henderson, and C.P. Kubiak, J. Chem. Phys. 109 (1998) p. 2874.

    Article  CAS  Google Scholar 

  14. P.S. Damle, A.W. Ghosh, and S. Datta, Phys. Rev. B 64 R201403 (2001); Chem. Phys. 281 (2002) p. 171.

  15. Y. Meir, N.S. Wingreen, and P.A. Lee, Phys. Rev. Lett. 70 (1993) p. 2601.

    Article  CAS  Google Scholar 

  16. Figures taken with permission from J.M. Kikkawa and D.D. Awschalom, Nature 397 (1999) p. 139

    Article  CAS  Google Scholar 

  17. U. Banin, Y-W. Cao, D. Katz, and O. Mello, Nature 400 (1995) p. 542

    Article  Google Scholar 

  18. M.K. Sunkara, S. Sharma, R. Miranda, G. Lian, and E.C. Dickey, Appl. Phys. Lett. 79 (2001) p. 1546

    Article  CAS  Google Scholar 

  19. B. Doris, M. Ieong, T. Kanarsky, Y. Zhang, R.A. Roy, O. Dokumaci, Z. Ren, F.-F. Jamin, L. Shi, W. Natzle, H.-J. Huang, J. Mezzapelle, A. Mocuta, S. Womack, M. Gribelyuk, E.C. Jones, R.J. Miller, H.-S.P. Wong, and W. Haensch, in IEDM Tech. Dig. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2002) p. 267.

    Google Scholar 

  20. Y. Meir and N. Wingreen, Phys. Rev. Lett. 68 (1992) p. 2512.

    Article  CAS  Google Scholar 

  21. R.K. Lake and S. Datta, Phys. Rev. B 46 (1992) p. 4757.

    Article  CAS  Google Scholar 

  22. D. Segal, A. Nitzan, W.B. Davis, M.R. Wasielewski, and M.A. Ratner, J. Phys. Chem. B 104 (2000) p. 3817.

    Article  CAS  Google Scholar 

  23. G. Neofotistos, R. Lake and S. Datta, Phys. Rev. B 43 1991) p. R2442

  24. F. Anariba and R.L. McCreery, J. Phys. Chem. B 106 (2002) p. 10355.

    Article  CAS  Google Scholar 

  25. J. Reichert, R. Ochs, D. Beckmann, H.B. Weber, M. Mayor, and H.v. Löhneysen, Phys. Rev. Lett. 88, 176804 (2002)

  26. F. Zahid, A.W. Ghosh, M. Paulsson, E. Polizzi, and S. Datta, arXiv.org e-print archive, condmat/0403401 (accessed April 2004).

    Google Scholar 

  27. P. Damle, A.W. Ghosh, and S. Datta, in Molecular Nanoelectronics, edited by M. Reed and T. Lee (American Scientific Publishers, Stevenson Ranch, CA, 2003).

  28. P.S. Damle, PhD thesis, Purdue University, 2002.

    Google Scholar 

  29. J.O. Lee, G. Lientschnig, F. Wiertz, M. Struijk, R.A.J. Janssen, R. Egberink, D.N. Reinhoudt, P. Hadley, and C. Dekker, Nano Lett. 3 (2003) p. 113

    Article  CAS  Google Scholar 

  30. C.R. Kagan, A. Afzali, R. Martel, L.M. Gignac, P.M. Solomon, A.G. Schrott, and B. Ek, Nano Lett. 3 2003) p.119.

    Article  CAS  Google Scholar 

  31. P.S. Damle, T. Rakshit, M. Paulsson, and S. Datta, IEEE Trans. Nanotech. 1 (2002) p. 145.

    Article  Google Scholar 

  32. A.W. Ghosh, T. Rakshit, and S. Datta, Nano Lett. 4 (2004) p. 565.

    Article  CAS  Google Scholar 

  33. S. Akita, Appl. Phys. Lett. 79 (2001) p. 1691.

    Article  CAS  Google Scholar 

  34. R.A. Wolkow, Jpn. J. Appl. Phys., Part 1 40 (2001) p. 4378

    Article  CAS  Google Scholar 

  35. M.C. Hersam, N.P. Guisinger, and J.W. Lyding, Nanotechnology 11 (2000) p. 70.

    Article  CAS  Google Scholar 

  36. Q. Liu and R. Hoffman, J. Am. Chem. Soc. 117 (1995) p. 4082.

    Article  CAS  Google Scholar 

  37. A.W. Ghosh, G-C. Liang, and D. Kienle (unpublished).

  38. T. Rakshit, G-C. Liang, A.W. Ghosh, and S. Datta, “Silicon-Based Molecular Electronics,” arXiv.org e-print archive, cond-mat/0305695 (accessed April 2004).

    Book  Google Scholar 

  39. R.C. Jaklevic and J. Lambe, Phys. Rev. Lett. 27 (1966) p. 1139.

    Article  Google Scholar 

  40. N.P. Guisinger, M.E. Greene, R. Basu, A.S. Baluch, and M.C. Hersam, Nano Lett. 4 (2004) p. 55.

    Article  CAS  Google Scholar 

  41. A. Seabaugh, X. Deng, T. Blake, B. Brar, T. Broekaert, R. Lake, F. Morris, and G. Frazier, in IEDM Tech. Dig. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1998) p. 429.

    Google Scholar 

  42. J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruna, P.L. McEuen, and D.C. Ralph, Nature 417 (2002) p. 722

    Article  CAS  Google Scholar 

  43. W.J. Liang, M.P. Shores, M. Bockrath, J.R. Long, and H. Park, Nature 417 (2002) p. 725

    Article  CAS  Google Scholar 

  44. L.H. Yu and D. Natelson, Nano Lett. 4 (2004) p. 79.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, A.W., Damle, P.S., Datta, S. et al. Molecular Electronics: Theory and Device Prospects. MRS Bulletin 29, 391–395 (2004). https://doi.org/10.1557/mrs2004.121

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.121

Keywords

Navigation