Skip to main content
Log in

Spectroscopic insights into the performance of quantum dot light-emitting diodes

  • Quantum dot light-emitting devices
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Lighting consumes almost one-fifth of all electricity generated today. In principle, with more efficient light sources replacing incandescent lamps, this demand can be reduced at least twofold. A dramatic improvement in lighting efficiency is possible by replacing traditional incandescent bulbs with light-emitting diodes (LEDs) in which current is directly converted into photons via the process of electroluminescence. The focus of this article is on the emerging technology of LEDs that use solution-processed semiconductor quantum dots (QDs) as light emitters. QDs are nano-sized semiconductor particles whose emission color can be tuned by simply changing their dimensions. They feature near-unity emission quantum yields and narrow emission bands, which result in excellent color purity. Here, we review spectroscopic studies of QDs that address the problem of nonradiative carrier losses in QD-LEDs and approaches for its mitigation via the appropriate design of QD emitters. An important conclusion of our studies is that the realization of high-performance LEDs might require a new generation of QDs that in addition to being efficient single-exciton emitters would also show high emission efficiency in the multicarrier regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. E.F. Schubert, Light-Emitting Diodes (Cambridge University Press, Cambridge, UK, 2006).

    Google Scholar 

  2. S. Schols, Device Architecture and Materials for Organic Light-Emitting Devices: Targeting High Current Densities and Control of the Triplet Concentration (Springer, London, UK, 2011).

    Google Scholar 

  3. F. So, Organic Electronics: Materials, Processing, Devices and Applications (CRC Press, Boca Raton, FL, 2009).

    Google Scholar 

  4. A.B. Tamayo, B.D. Alleyne, P.I. Djurovich, S. Lamansky, I. Tsyba, N.N. Ho, R. Bau, M.E. Thompson, J. Am. Chem. Soc. 125, 7377 (2003).

    Google Scholar 

  5. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, P.E. Burrows, S.R. Forrest, M.E. Thompson, J. Am. Chem. Soc. 123, 4304 (2001).

    Google Scholar 

  6. S.R. Forrest, M.L. Kaplan, P.H. Schmidt, J. Appl. Phys. 56, 543 (1984).

    Google Scholar 

  7. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, Nature 347, 539 (1990).

    Google Scholar 

  8. G. Gustafsson, Y. Cao, G.M. Treacy, F. Klavetter, N. Colaneri, A.J. Heeger, Nature 357, 477 (1992).

    Google Scholar 

  9. W.J. Begley, T.K.S.I. Hatwar, SID Intl. Symp. Dig. Tech. Papers 37, 942 (2006).

    Google Scholar 

  10. H. Kuma, J. Jinde, M. Kawamura, SID Intl. Symp. Dig. Tech. Papers 38, 1504 (2007).

    Google Scholar 

  11. M. Ricks, J.R. Vargas, K.P. Klubek, SID Intl. Symp. Dig. Tech. Papers 38, 830 (2007).

    Google Scholar 

  12. D. Kondakov, SID Intl. Symp. Dig. Tech. Papers 39, 617 (2008).

    Google Scholar 

  13. M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, S.R. Forrest, Nature 395, 151 (1998).

    Google Scholar 

  14. H. Sasabe, Y. Li, S. Su, T. Takeda, J. Kido, Jpn. J. Appl. Phys. 46, 10 (2007).

    Google Scholar 

  15. Z.B. Wang, M.G. Helander, J. Qiu, D.P. Puzzo, M.T. Greiner, Z.M. Hudson S. Wang, Z.W. Liu, Z.H. Lu, Nat. Photonics 5, 753 (2011).

    Google Scholar 

  16. S.J. Yeh, M.F. Wu, C.T. Chen, Y.H. Song, Y. Chi, M.H. Ho, S.F. Hsu, C.H. Chen, Adv. Mater. 17, 285 (2005).

    Google Scholar 

  17. D.V. Talapin, J.S. Lee, M.V. Kovalenko, E.V. Shevchenko, Chem. Rev. 110, 389 (2010).

    Google Scholar 

  18. A.P. Alivisatos, Endeavour 21, 56 (1997).

    Google Scholar 

  19. V.I. Klimov, Nanocrystal Quantum Dots (CRC Press, New York, 2010).

    Google Scholar 

  20. L. Brus, J. Phys. Chem. 90, 2555 (1986).

    Google Scholar 

  21. A.P. Alivisatos, Science 271, 933 (1996).

    Google Scholar 

  22. C.B. Murray, C.R. Kagan, M.G. Bawendi, Annu. Rev. Mater. Sci. 30, 545 (2000).

    Google Scholar 

  23. V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Nature 370, 354 (1994).

    Google Scholar 

  24. V.I. Klimov, A.A. Mikhailovsky, S. Xu, A. Malko, J.A. Hollingsworth, C.A. Leatherdale, H.-J. Eisler, M.G. Bawendi, Science 290, 314 (2000).

    Google Scholar 

  25. O.E. Semonin, J.M. Luther, S. Choi, H.-Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Science 334, 1530 (2011).

    Google Scholar 

  26. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, E.H. Sargent, Nature 442, 180 (2006).

    Google Scholar 

  27. T.-H. Kim, K.-S. Cho, E.K. Lee, S.J. Lee, J. Chae, J.W. Kim, D.H. Kim, J.-Y. Kwon, G. Amaratunga, S.Y. Lee, B.L. Choi, Y. Kuk, J.M. Kim, K. Kim, Nat. Photonics 5, 176 (2011).

    Google Scholar 

  28. J. Kwak, W.K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D.Y. Yoon, K. Char, S. Lee, C. Lee, Nano Lett. 12, 2362 (2012).

    Google Scholar 

  29. B.S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen J. Steckel, V. Bulović, M. Bawendi, S. Coe-Sullivan, P.T. Kazlas, Nat. Photonics 7, 407 (2013).

    Google Scholar 

  30. J. Lee, V.C. Sundar, J.R. Heine, M.G. Bawendi, K.F. Jensen, Adv. Mater. 12, 1102 (2000).

    Google Scholar 

  31. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, Y. Kim, Adv. Mater. 22, 3076 (2010).

    Google Scholar 

  32. H. Woo, J. Lim, Y. Lee, J. Sung, H. Shin, J.M. Oh, M. Choi, H. Yoon, W.K. Bae, K. Char, J. Mater. Chem. C 1, 1983 (2013).

    Google Scholar 

  33. M. Achermann, M.A. Petruska, D.D. Koleske, M.H. Crawford, V.I. Klimov, Nano Lett. 6, 1396 (2006).

    Google Scholar 

  34. M. Achermann, M.A. Petruska, S. Kos, D.L. Smith, D.D. Koleske, V.I. Klimov, Nature 429, 642 (2004).

    Google Scholar 

  35. W.K. Bae, J. Kwak, J.W. Park, K. Char, C. Lee, S. Lee, Adv. Mater. 21, 1690 (2009).

    Google Scholar 

  36. K.-S. Cho, E.K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S.J. Lee, S.-J. Kwon, J.Y. Han, B.-K. Kim, B.L. Choi, J.M. Kim, Nat. Photonics 3, 341 (2009).

    Google Scholar 

  37. T.-H. Kim, K.-S. Cho, E.K. Lee, S.J. Lee, J. Chae, J.W. Kim, D.H. Kim, J.-Y. Kwon, G. Amaratunga, S.Y. Lee, B.L. Choi, Y. Kuk, J.M. Kim, K. Kim, Nat. Photonics 5, 176 (2011).

    Google Scholar 

  38. W.K. Bae, J. Kwak, J. Lim, D. Lee, M.K. Nam, K. Char, C. Lee, S. Lee, Nano Lett. 10, 2368 (2010).

    Google Scholar 

  39. J.M. Caruge, J.E. Halpert, V. Wood, V. Bulović, M.G. Bawendi, Nat. Photonics 2, 247 (2008).

    Google Scholar 

  40. V.I. Klimov, D.W. McBranch, C.A. Leatherdale, M.G. Bawendi, Phys. Rev. B 60, 13740 (1999).

    Google Scholar 

  41. M. Jones, S.S. Lo, G.D. Scholes, Proc. Natl. Acad. Sci. U.S.A. 106, 3011 (2009).

    Google Scholar 

  42. J.M. Luther, J.M. Pietryga, ACS Nano 7, 1845 (2013).

    Google Scholar 

  43. M.A. Hines, P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996).

    Google Scholar 

  44. B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).

    Google Scholar 

  45. X. Peng, M.C. Schlamp, A.V. Kadavanich, A.P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997).

    Google Scholar 

  46. J.M. Pietryga, D.J. Werder, D.J. Williams, J.L. Casson, R.D. Schaller, V.I. Klimov, J.A. Hollingsworth, J. Am. Chem. Soc. 130, 4879 (2008).

    Google Scholar 

  47. W.K. Bae, J. Joo, L.A. Padilha, J. Won, D.C. Lee, Q. Lin, W.-K. Koh, H. Luo, V.I. Klimov, J.M. Pietryga, J. Am. Chem. Soc. 134, 20160 (2012).

    Google Scholar 

  48. D.V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, H. Weller, J. Phys. Chem. B 108, 18826 (2004).

    Google Scholar 

  49. R. Xie, U. Kolb, J. Li, T. Basché, A. Mews, J. Am. Chem. Soc. 127, 7480 (2005).

    Google Scholar 

  50. W.K. Bae, K. Char, H. Hur, S. Lee, Chem. Mater. 20, 531 (2008).

    Google Scholar 

  51. W.K. Bae, M.K. Nam, K. Char, S. Lee, Chem. Mater. 20, 5307 (2008).

    Google Scholar 

  52. S.A. Crooker, J.A. Hollingsworth, S. Tretiak, V.I. Klimov, Phys. Rev. Lett. 89, 186802 (2002).

    Google Scholar 

  53. C.R. Kagan, C.B. Murray, M. Nirmal, M.G. Bawendi, Phys. Rev. Lett. 76, 1517 (1996).

    Google Scholar 

  54. M. Achermann, M.A. Petruska, S.A. Crooker, V.I. Klimov, J. Phys. Chem. B 107, 13782 (2003).

    Google Scholar 

  55. S.A. Crooker, T. Barrick, J.A. Hollingsworth, V.I. Klimov, Appl. Phys. Lett. 82, 2793 (2003).

    Google Scholar 

  56. B.N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V.I. Klimov, J.A. Hollingsworth, H. Htoon, Nano Lett. 12, 331 (2011).

    Google Scholar 

  57. C. Galland, Y. Ghosh, A. Steinbrück, J.A. Hollingsworth, H. Htoon, V.I. Klimov, Nat. Commun. 3, 908 (2012).

    Google Scholar 

  58. C. Galland, Y. Ghosh, A. Steinbruck, M. Sykora, J.A. Hollingsworth, V.I. Klimov, H. Htoon, Nature 479, 203 (2011).

    Google Scholar 

  59. P.L. Redmond, L.E. Brus, J. Phys. Chem. C 111, 14849 (2007).

    Google Scholar 

  60. L.A. Padilha, I. Robel, D.C. Lee, P. Nagpal, J.M. Pietryga, V.I. Klimov, ACS Nano 5, 5045 (2011).

    Google Scholar 

  61. J.A. McGuire, M. Sykora, I. Robel, L.A. Padilha, J. Joo, J.M. Pietryga, V.I. Klimov, ACS Nano 4, 6087 (2010).

    Google Scholar 

  62. V. Fomenko, D.J. Nesbitt, Nano Lett. 8, 287 (2007).

    Google Scholar 

  63. S. Hohng, T. Ha, J. Am. Chem. Soc. 126, 1324 (2004).

    Google Scholar 

  64. S. Jin, N. Song, T. Lian, ACS Nano 4, 1545 (2010).

    Google Scholar 

  65. J.M. Pietryga, K.K. Zhuravlev, M. Whitehead, V.I. Klimov, R.D. Schaller, Phys. Rev. Lett. 101, 217401 (2008).

    Google Scholar 

  66. V.I. Klimov, A.A. Mikhailovsky, D.W. McBranch, C.A. Leatherdale, M.G. Bawendi, Science 287, 1011 (2000).

    Google Scholar 

  67. I. Robel, R. Gresback, U. Kortshagen, R.D. Schaller, V.I. Klimov, Phys. Rev. Lett. 102, 177404 (2009).

    Google Scholar 

  68. W.K. Bae, L.A. Padilha, Y.-S. Park, H. McDaniel, I. Robel, J.M. Pietryga V.I. Klimov, ACS Nano 7, 3411 (2013).

    Google Scholar 

  69. T.A. Baker, J.L. Rouge, D.J. Nesbitt, Mol. Phys. 107, 1867 (2009).

    Google Scholar 

  70. Y. Chen, J. Vela, H. Htoon, J.L. Casson, D.J. Werder, D.A. Bussian, V.I. Klimov, J.A. Hollingsworth, J. Am. Chem. Soc. 130, 5026 (2008).

    Google Scholar 

  71. G.E. Cragg, A.L. Efros, Nano Lett. 10, 313 (2009).

    Google Scholar 

  72. F. García-Santamaría, S. Brovelli, R. Viswanatha, J.A. Hollingsworth, H. Htoon, S.A. Crooker, V.I. Klimov, Nano Lett. 11, 687 (2011).

    Google Scholar 

  73. F. García-Santamaría, Y. Chen, J. Vela, R.D. Schaller, J.A. Hollingsworth V.I. Klimov, Nano Lett. 9, 3482 (2009).

    Google Scholar 

  74. P.P. Jha, P. Guyot-Sionnest, ACS Nano 3, 1011 (2009).

    Google Scholar 

  75. B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, B. Dubertret, Nat. Mater. 7, 659 (2008).

    Google Scholar 

  76. Y.-S. Park, A.V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. García-Santamaría J.A. Hollingsworth, V.I. Klimov, H. Htoon, Phys. Rev. Lett. 106, 187401 (2011).

    Google Scholar 

  77. W. Qin, P. Guyot-Sionnest, ACS Nano 6, 9125 (2012).

    Google Scholar 

  78. X. Wang, X. Ren, K. Kahen, M.A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G.E. Cragg, A.L. Efros, T.D. Krauss, Nature 459, 686 (2009).

    Google Scholar 

  79. M. Zavelani-Rossi, M.G. Lupo, F. Tassone, L. Manna, G. Lanzani, Nano Lett. 10, 3142 (2010).

    Google Scholar 

  80. P. Frantsuzov, M. Kuno, B. Janko, R.A. Marcus, Nat. Phys. 4, 519 (2008).

    Google Scholar 

  81. W.K. Bae, Y.-S. Park, J. Lim, D. Lee, L.A. Padilha, H. McDaniel, I. Robel C. Lee, J.M. Pietryga, V.I. Klimov, Arxiv 1307, 0760944 (2013).

    Google Scholar 

  82. C. Javaux, B. Mahler, B. Dubertret, A. Shabaev, A.V. Rodina, A.L. Efros D.R. Yakovlev, F. Liu, M. Bayer, G. Camps, L. Biadala, S. Buil, X. Quelin, J.P. Hermier Nat. Nanotechnol. 8, 206 (2013).

    Google Scholar 

  83. J.A. McGuire, M. Sykora, J. Joo, J.M. Pietryga, V.I. Klimov, Nano Lett. 10, 2049 (2010).

    Google Scholar 

  84. J.A. McGuire, J. Joo, J.M. Pietryga, R.D. Schaller, V.I. Klimov, Acc. Chem. Res. 41, 1810 (2008).

    Google Scholar 

  85. W. Koh, A.Y. Koposov, J.T. Stewart, B.N. Pal, I. Robel, J.M. Pietryga, V.I. Klimov Sci. Rep. (2013), doi 10.1038/srep02004.

  86. L.A. Padilha, W.K. Bae, V.I. Klimov, J.M. Pietryga, R.D. Schaller, Nano Lett. 13, 925 (2013).

    Google Scholar 

  87. J.I. Climente, J.L. Movilla, J. Planelles, Small 8, 754 (2012).

    Google Scholar 

  88. Y.-S. Park, W.K. Bae, L.A. Padilha, J.M. Pietryga, V.I. Klimov, Arxiv 1307, 0760938 (2013).

    Google Scholar 

  89. J.J. Li, Y.A. Wang, W. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, X. Peng J. Am. Chem. Soc. 125, 12567 (2003).

    Google Scholar 

  90. Y. Shirasaki, G.J. Supran, W.A. Tisdale, V. Bulović, Phys. Rev. Lett. 110, 217403 (2013).

    Google Scholar 

  91. R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, E. Lifshitz, Phys. Rev. Lett. 102, 197401 (2009).

    Google Scholar 

  92. S. Coe, W.-K. Woo, M. Bawendi, V. Bulović, Nature 420, 800 (2002).

    Google Scholar 

  93. A.H. Mueller, M.A. Petruska, M. Achermann, D.J. Werder, E.A. Akhadov, D.D. Koleske, M.A. Hoffbauer,V.I. Klimov, Nano Lett. 5, 1039(2005).

    Google Scholar 

  94. J.-M. Caruge, J.E. Halpert, V. Bulović, M.G. Bawendi, Nano Lett. 6, 2991 (2006).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Chemical Sciences, Biosciences, and Geosciences Division of Office of Science, Office of Basic Energy Sciences, US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Ki Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, W.K., Brovelli, S. & Klimov, V.I. Spectroscopic insights into the performance of quantum dot light-emitting diodes. MRS Bulletin 38, 721–730 (2013). https://doi.org/10.1557/mrs.2013.182

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.182

Navigation