Skip to main content
Log in

The structure and reactivity of surfaces revealed by scanning tunneling microscopy

  • Scanning probes for new energy materials: Probing local structure and function
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Scanning tunneling microscopy (STM) has revolutionized the fields of heterogeneous catalysis and environmental sciences by providing unique insights into the atomic-scale structure of model catalysts. For the first time, STM has revealed the structure of active sites, including steps, kinks, and special atomic geometries in compounds. It has provided images of atomic scale dynamic processes, including diffusion and reactions. STM can operate in environments of gases and liquids, as found in real life and in industrial processes. We illustrate these unique capabilities with examples and how the information obtained can lead to industrially relevant information and help the design of new catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982).

    Google Scholar 

  2. R. Wiesendanger, Ed., Scanning Probe Microscopy and Spectroscopy: Methods and Applications (Cambridge University Press, Cambridge, 1994), p. 637.

    Google Scholar 

  3. M. Bowker, Chem. Soc. Rev. 37, 2204 (2008).

    Google Scholar 

  4. F. Besenbacher, M. Brorson, B.S. Clausen, S. Helveg, B. Hinnemann, J. Kibsgaard, J.V. Lauritsen, P.G. Moses, J.K. Nørskov, H. Topsøe, Catal. Today, 130, 86 (2008).

    Google Scholar 

  5. A. Wieckowski, in Fuel Cell Catalysis: A Surface Science Approach, M. Koper, Ed. (Wiley-Interscience, Hoboken, NJ, 2009).

    Google Scholar 

  6. F. Besenbacher, I. Chorkendorff, B.S. Clausen, B. Hammer, A.M. Molenbroek, J.K. Nørskov, I. Stensgaard, Science 279, 1913 (1998).

    Google Scholar 

  7. R.T. Vang, K. Honkala, S. Dahl, E.K. Vestergaard, J. Schnadt, E. Lægsgaard, B.S. Clausen, J.K. Nørskov, F. Besenbacher, Nat. Mater. 4, 160 (2005).

    Google Scholar 

  8. J.V. Lauritsen, M. Nyberg, J.K. Nørskov, B.S. Clausen, H. Topsøe, E. Lægsgaard, F. Besenbacher, J. Catal. 224, 94 (2004).

    Google Scholar 

  9. A.K. Tuxen, J. Kibsgaard, H.T. Gøbel, E. Lægsgaard, H. Topsøe, F. Besenbacher, J.V. Lauritsen, ACS Nano 4, 4677 (2010).

    Google Scholar 

  10. T. Mitsui, M.K. Rose, E. Fomin, D. Frank Ogletree, M. Salmeron, Science 297, 1850 (2002).

    Google Scholar 

  11. V. Ranea, A. Michaelides, R. Ramírez, P. de Andres, J. Vergés, D. King, Phys. Rev. Lett. 92, 136104 (2004).

    Google Scholar 

  12. R.Q. Hwang, D.M. Zeglinski, A. López Vázquez-de-Parga, D.F. Ogletree, M. Salmeron, D.R. Denley, Phys. Rev. B 44, 1914 (1991).

    Google Scholar 

  13. J.C. Dunphy, P. Sautet, D.F. Ogletree, O. Dabboussi, M.B. Salmeron, Phys. Rev. B 47, 2330 (1993).

    Google Scholar 

  14. T. Mitsui, M.K. Rose, E. Fomin, D.F. Ogletree, M. Salmeron, Phys. Rev. Lett. 94 (03), 6101 (2005).

    Google Scholar 

  15. J. Wintterlin, S. Völkening, T.V.W. Janssens, T. Zambelli, G. Ertl, Science 278, 1931 (1997).

    Google Scholar 

  16. C.T. Campbell, G. Ertl, H. Kuipers, J. Segner, J. Chem. Phys. 73, 5862 (1980).

    Google Scholar 

  17. B.J. McIntyre, M. Salmeron, G.A. Somorjai, J. Vac. Sci. Technol., A 11, 1964 (1993).

    Google Scholar 

  18. L. Österlund, P.B. Rasmussen, P. Thostrup, E. Lægsgaard, I. Stensgaard, F. Besenbacher, Phys. Rev. Lett. 86, 460 (2001).

    Google Scholar 

  19. P.B. Rasmussen, B.L.M. Hendriksen, H. Zeijlemaker, H.G. Ficke, J.W.M. Frenken, Rev. Sci. Instrum. 69, 3879 (1998).

    Google Scholar 

  20. K.B. Rider, K.S. Hwang, M. Salmeron, G.A. Somorjai, Phys. Rev. Lett. 86 (19), 4330 (2001).

    Google Scholar 

  21. K.B. Rider, K. Hwang, M. Salmeron, G. Somorjai, J. Am. Chem. Soc. 124, 5588 (2002).

    Google Scholar 

  22. F.G. Requejo, E.L.D. Hebenstreit, D.F. Ogletree, M. Salmeron, J. Catal. 226 (1), 83 (2004).

    Google Scholar 

  23. P. Thostrup, E. Christoffersen, H.T. Lorensen, K.W. Jacobsen, F. Besenbacher, J.K. Nørskov, Phys. Rev. Lett. 87, 126102 (2001).

    Google Scholar 

  24. P. Thostrup, E. Kruse Vestergaard, T. An, E. Lægsgaard, F. Besenbacher, J. Chem. Phys. 118, 3724 (2003).

    Google Scholar 

  25. R.J. Behm, P.A. Thiel, P.R. Norton, G. Ertl, J. Chem. Phys. 78, 7437 (1983).

    Google Scholar 

  26. E. Ritter, R.J. Behm, G. Potschke, J. Wintterlin, Surf. Sci. 181, 403 (1987).

    Google Scholar 

  27. F. Tao, S. Dag, L.-W. Wang, Z. Liu, D.R. Butcher, H. Bluhm, M. Salmeron, G.A. Somorjai, Science 327, 850 (2010).

    Google Scholar 

  28. E. Lægsgaard, L. Österlund, P. Thostrup, P.B. Rasmussen, I. Stensgaard, F. Besenbacher, Rev. Sci. Instrum. 72, 3537 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flemming Besenbacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besenbacher, F., Thostrup, P. & Salmeron, M. The structure and reactivity of surfaces revealed by scanning tunneling microscopy. MRS Bulletin 37, 677–681 (2012). https://doi.org/10.1557/mrs.2012.142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.142

Navigation