Skip to main content
Log in

Ion motion and electrochemistry in nanostructures

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Ionic motion and electrochemistry in bulk materials and at their surfaces have long been studied for their relevance in several areas of science and technology, ranging from ionic conductors to batteries to fuel cells. The ability to engineer materials at the nanometer scale, however, has made these concepts even more relevant. This is due to the large surface-tovolume ratios typical of nanostructures. This implies, for instance, that chemical reactivity and defect motion at surfaces or interfaces are enhanced or may be fundamentally different compared to their bulk counterparts. In addition, nominally modest voltages or differences in chemical potential when applied across nanoscale distances can produce large electric fields and diffusive forces. While all of this may complicate the interpretation of experimental results, it also presents us with new opportunities for materials engineering. In this article, we will briefly review the current research status of several systems where ionic motion and electrochemical effects are of particular importance. These include resistive switching systems, oxide heterostructures, ferroelectric materials, and ionic liquids. We will report on experimental results and also emphasize open questions regarding their interpretation. We will conclude by discussing future research directions in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. S. Kim, S. Yamaguchi, J.A. Elliot, MRS Bull. 34, 900 (2009).

    Google Scholar 

  2. R.A. Huggins, Advanced Batteries: Materials Science Aspects (Springer, NY, 2008).

  3. Z. Zhang, P. Ramadass, in Lithium-Ion Batteries: Science and Technologies, M. Yoshio, R.J. Brodd, A. Kozawa, Eds. (Springer, NY, 2009), C. 20.

  4. J.B. Goodenough, H.D. Abruna, M.V. Buchanan, “ Basic Research Needs for Electrical Energy Storage: Report of the Basic Energy Sciences workshop on Electrical Energy Storage” (U.S. Department of Energy, Basic Energy Sciences, 2007).

  5. J.B. Goodenough, Y. Kim, Chem. Mater. 22, 587 (2010).

    Google Scholar 

  6. N.Q. Minh, J. Am. Ceram. Soc. 76, 563 (1993).

  7. B.C.H. Steele, A. Heinzel, Nature 414, 345 (2001).

  8. J. Maier, Nat. Mater. 4, 805 (2005).

  9. M. Di Ventra, Electrical Transport in Nanoscale Systems (Cambridge University Press, UK, 2008).

  10. H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion- Controlled Processes (Springer, NY, 2007).

  11. C. Kittel, Introduction to Solid State Physics, 8th Edition (Wiley, NY, 2004).

  12. S.R. Elliott, Physics of Amorphous Materials (Longman Scientific and Technical, England, 1990), 2nd ed.

  13. M.B. Armand, P.G. Bruce, M. Forsyth, B. Scrosati, W. Wieczorek, Polymer Electrolytes (Wiley, NY, 2011), pp. 1 – 31.

  14. O.W. Johnson, S. Paek, J.W. DeFord, J. Appl. Phys. 46, 1026 (1975).

  15. J.B. Bates, J.C. Wang, R.A. Perkins, Phys. Rev. B 19, 4130 (1979).

  16. C. Cen, S. Thiel, J. Mannhart, J. Levy, Science 323, 1026 (2009).

  17. K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, M. Kawasaki, Nat. Mater. 7, 855 (2008).

  18. R. Waser, M. Aono, Nat. Mat. 6, 833 (2007).

  19. Y.V. Pershin, M. Di Ventra, Adv. Phys. 60, 145 (2011).

  20. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008).

  21. L.O. Chua, S.M. Kang, Proc. IEEE 64, 209 (1976).

  22. M. Di Ventra, Y.V. Pershin, L.O. Chua, Proc. IEEE 97, 1717 (2009).

  23. K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, Nature 433, 47 (2005).

  24. A. Sawa, Mater. Today 11, 28 (2008).

  25. A.L. Korotkov, M. Bowman, H.J. McGuinness, D. Davidovic, Nanotechnology 14, 42 (2003).

  26. J. Wu, R.L. McCreery, J. Electrochem. Soc. 156, P29 (2009).

  27. D.S. Jeong, H. Schroeder, R. Waser, Phys. Rev. B 79, 195317 (2009).

  28. J. Yao, L. Zhong, Z. Zhang, T. He, Z. Jin, P.J. Wheeler, D. Natelson, J.M. Tour, Small 5, 2910 (2009).

  29. J.M. Tour, L. Cheng, D.P. Nackashi, Y. Yao, A.K. Flatt, S.K. St. Angelo, T.E. Mallouk, P.D. Franzon, J. Amer. Chem. Soc. 125, 13279 (2003).

  30. J. Yao, Z. Sun, L. Zhong, D. Natelson, J.M. Tour, Nano Lett. 10, 4105 (2010).

  31. J. Yao, L. Zhong, D. Natelson, J.M. Tour, J. Amer. Chem. Soc. 133, 941 (2011).

  32. R.J. Cava, B. Batlogg, C.H. Chen, E.A. Rietman, S.M. Zahurak, D. Werder, Nature 329, 423 (1987).

  33. C.W. Schneider, M. Esposito, I. Marozau, K. Conder, M. Doebeli, Y. Hu, M. Mallepell, A. Wokaun, T. Lippert, Appl. Phys. Lett. 97, 192107 (2010).

  34. N. Reyren, S. Thiel, A.D. Caviglia, L.F. Kourkoutis, G. Hammerl, C. Richter, C.W. Schneider, T. Kopp, A.-S. Ruetschi, D. Jaccard, M. Gabay, D.A. Muller, J.-M. Triscone, J. Mannhart, Science 317, 1196 (2007).

  35. N.C. Bristowe, P.B. Littlewood, E. Artacho, Phys. Rev. B 83, 205405 (2011).

  36. Y. Xie, C. Bell, T. Yajima, Y. Hikita, H.Y. Hwang, Nano Lett. 10, 2588 (2010).

  37. F. Bi, D.F. Bogorin, C. Cen, C.W. Bark, J.-W. Park, C.-B. Eom, J. Levy, Appl. Phys. Lett. 97, 173110 (2010).

  38. C. Weisbuch, B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic Press, MO, 1991).

  39. H. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Y. Iwasa, J. Amer. Chem. Soc. 132, 6672 (2010).

  40. H. Ohta, Y. Sato, T. Kato, S.W. Kim, K. Nomura, Y. Ikuhara, H. Hosono, Nat. Commun. 1, 118 (2011).

  41. J.T. Ye, S. Inoue, K. Kobayashi, Y. Kasahara, H.T. Yuan, H. Shimotani, Y. Iwasa, Nat. Mater. 9, 125 (2010).

  42. A.T. Bollinger, G. Dubuis, J. Yoon, D. Pavuna, J. Misewich, I. Bozovic, Nature 472 (2011).

  43. X. Leng, J. Garcia-Barriocanal, S. Bose, Y. Lee, A.M. Goldman, Phys. Rev. Lett. 107, 027001 (2011).

  44. J.F. Scott, C.A. Paz de Araujo, Science 246, 1400 (1989).

  45. E.Y. Tsymbal, H. Kohlstedt, Science 313, 181 (2006).

  46. V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N.D. Mathur, A. Barthelemy, M. Bibes, Nature 460, 81 (2011).

  47. S.V. Kalinin, S. Jesse, A. Tselev, A.P. Baddorf, N. Balke, ACS Nano 5, 5683 (2011).

  48. N.C. Bristowe, M. Stengel, P.B. Littlewood, J.M. Pruneda, E. Artacho, arxiv:1108.2208 (2011).

  49. G.B. Stephenson, M.J. Highland, arxiv:1101.0298 (2011).

  50. S.S. Nonnenmann, E.M. Gallo, J.E. Spanier, Appl. Phys. Lett. 97, 102904 (2010).

  51. T.O. Wehling, K.S. Novoselov, S.V. Morozov, E.E. Vdovin, M.I. Katsnelson, A.K. Geim, A.I. Lichtenstein, Nano Lett. 8, 173 (2008).

  52. X. Hong, J. Hoffman, A. Posadas, K. Zou, C.H. Ahn, J. Zhu, Appl. Phys. Lett. 97, 033114 (2010).

  53. Y. Xie, Y. Hikita, C. Bell, H.Y. Hwang, 2011, in press (available at http://arxiv.org/abs/1105.3891).

  54. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331, 746 (2011).

  55. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Nano Lett. 11, 3026 (2011).

  56. P.G. Bruce, B. Scrosati, J.-M. Tarascon, Angew. Chem. Int. Ed. 47, 2930 (2008).

  57. M. Armand, J.-M. Tarascon, Nature 451, 652 (2008).

  58. X.H. Liu, L.Q. Zhang, L. Zhong, Y. Liu, H. Zheng, J.W. Wang, J.-H. Cho, S.A. Dayeh, S.T. Picraux, J.P. Sullivan, S.X. Mao, Z.Z. Ye, J.Y. Huang, Nano Lett. 11, 2251 (2011).

  59. X.H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L.Q. Zhang, Y. Liu, A. Kushima, W.T. Liang, J.W. Wang, J.-H. Cho, E. Epstein, S.A. Dayeh, S.T. Picraux, T. Zhu, J. Li, J.P. Sullivan, J. Cumings, C. Wang, S.X. Mao, Z.Z. Ye, S. Zhang, J.Y. Huang, Nano Lett. 11, 3312 (2011).

  60. M. Zwolak, M. Di Ventra, Rev. Mod. Phys. 80, 141 (2008).

    Google Scholar 

  61. M.A. Alam, B. Weir, J. Bude, P. Silverman, D. Monroe, “ Explanation of soft and hard breakdown and its consequences for area scaling,” IEDM Technical Digest 1999, 449 – 452 (2000).

    Google Scholar 

Download references

Acknowledgments

D.N. acknowledges partial support from the Department of Energy Basic Energy Sciences grant DE-FG02–06ER46337. M.D. acknowledges partial support from the NSF grant No. DMR-0802830 and UC-Labs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Natelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natelson, D., Di Ventra, M. Ion motion and electrochemistry in nanostructures. MRS Bulletin 36, 914–920 (2011). https://doi.org/10.1557/mrs.2011.266

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.266

Navigation