Skip to main content

Advertisement

Log in

Three-dimensional electrodes and battery architectures

  • Electrochemical Energy Storage to Power the 21st Century
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) battery architectures have emerged as a new direction for powering microelectromechanical systems and other small autonomous devices. Although there are few examples to date of fully functioning 3D batteries, these power sources have the potential to achieve high power density and high energy density in a small footprint. This overview highlights the various architectures proposed for 3D batteries, the advances made in the fabrication of components designed for these devices, and the remaining technical challenges. Efforts directed at establishing design rules for 3D architectures and modeling are providing insight concerning the energy density and current uniformity achievable with these architectures. The significant progress made on the fabrication of electrodes and electrolytes designed for 3D batteries is an indication that a number of these battery architectures will be successfully demonstrated within the next few years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. J.B. Goodenough, H.D. Abruña, M.V. Buchanan, Basic Research Needs for Electrical Energy Storage: Report of the Basic Energy Sciences Workshop on Electrical Energy Storage (U.S. Department of Energy, Office of Basic Energy Sciences, 2007).

    Google Scholar 

  2. H. Sato, C.W. Berry, B.E. Casey, G. Lavella, Y. Yao, J.M. VandenBrooks, M.M. Maharbiz, IEEE 21st Intl. Conf. Micro Electro Mechanical Systems 2008 (MEMS 2008), pp. 164–167.

  3. D. Lemmerhirt, K. Wise, Proc. IEEE 94, 1138 (2006).

    Article  Google Scholar 

  4. P. Mohseni, K. Najafi, S. Eliades, X. Wang, IEEE Trans. 13, 263 (2005).

    Google Scholar 

  5. E. Johannessen, L. Wang, L. Cui, T.B. Tang, M. Ahmadian, A. Astaras, S.W.J. Reid, P.S. Yam, A.F. Murray, B.W. Flynn, S.P. Beaumont, D.R.S. Cumming, J.M. Cooper, IEEE Trans. Biomed. Eng. 51, 525 (2004).

    Article  Google Scholar 

  6. M. Roberts, P. Johns, J. Owen, D. Brandell, K. Edstrom, G. El Enany, C. Guery, D. Golodnitsky, M. Lacey, C. Lecoeur, H. Mazor, E. Peled, E. Perre, M.M. Shaijumon, P. Simon, P.-L. Taberna, J. Mater. Chem. (2011), in press.

  7. H. Mazor, D. Golodnitsky, L. Burstein, E. Peled, Electrochem. Solid-State Lett. 12, A232 (2009).

  8. M.S. Whittingham, Dalton Trans. 5424 (2008).

  9. B. Dunn, J.W. Long, D.R. Rolison, Interface 17, 49 (2008).

    CAS  Google Scholar 

  10. D.R. Rolison, J.W. Long, J.C. Lytle, A.E. Fischer, C.P. Rhodes, T.M. McEvoy, M.E. Bourga, A.M. Lubers, Chem. Soc. Rev. 38, 226 (2009).

    Article  CAS  Google Scholar 

  11. M. Nathan, D. Golodnitsky, V. Yufit, E. Strauss, T. Ripenbein, I. Shechtman, S. Menkin, E. Peled, J. Microelectromech. Syst. 14, 879 (2005).

    Article  CAS  Google Scholar 

  12. P. Notten, F. Roozeboom, R. Niessen, L. Baggetto, Adv. Mater. 19, 4564 (2007).

    Article  CAS  Google Scholar 

  13. F. Chamran, Y. Yeh, H.S. Min, B. Dunn, C.J. Kim, J. Microelectromech. Syst. 16, 844 (2007).

    Article  CAS  Google Scholar 

  14. J.W. Long, B. Dunn, D.R. Rolison, H.S. White, Chem. Rev. 104, 4463 (2004).

    Article  CAS  Google Scholar 

  15. P.L. Taberna, S. Mitra, P. Poizot, P. Simon, J.M. Tarascon, Nat. Mater. 5, 567 (2006).

    Article  CAS  Google Scholar 

  16. N.S. Ergang, M.A. Fierke, Z. Wang, W.H. Smyrl, A. Stein, J. Electrochem. Soc. 154, A1135 (2007).

  17. M. Kotobuki, Y. Suzuki, H. Munakata, K. Kanamura, Y. Sato, K. Yamamoto, T. Yoshida, Electrochim. Acta 56,1023 (2011).

  18. J.W. Long, D.R. Rolison, Acc. Chem. Res. 40, 854 (2007).

    Article  CAS  Google Scholar 

  19. R.W. Hart, H.S. White, B. Dunn, D.R. Rolison, Electrochem. Commun. 5, 120 (2003).

    Article  CAS  Google Scholar 

  20. V. Zadin, H. Kasemägi, A. Aabloo, D. Brandell, J. Power Sources 195, 6218 (2010).

    Article  CAS  Google Scholar 

  21. M. Nishizawa, K. Mukai, S. Kuwabata, C.R. Martin, H. Yoneyama, J. Electrochem. Soc. 144, 1923 (1997).

    Article  CAS  Google Scholar 

  22. M.S. Wu, P.C.J. Chiang, J.T. Lee, J.C. Lin, J. Phys. Chem. B 109, 23279 (2005).

    Article  CAS  Google Scholar 

  23. L.F. Cui, Y. Yang, C.M. Hsu, Y. Cui, Nano Lett. 9, 3370 (2009).

    Article  CAS  Google Scholar 

  24. N.C. Li, C.R. Martin, B. Scrosati, Electrochem. Solid-State Lett. 3, 316 (2000).

    Article  CAS  Google Scholar 

  25. G.T. Teixidor, R.B. Zaouk, B.Y. Park, M.J. Madou, J. Power Sources 183, 730 (2008).

    Article  CAS  Google Scholar 

  26. S.K. Cheah, E. Perre, M. Rooth, M. Fondell, A. Harsta, L. Nyholm, M. Boman, T. Gustafsson, J. Lu, P. Simon, K. Edstrom, Nano Lett. 9, 3230 (2009).

    Article  CAS  Google Scholar 

  27. M.M. Shaijumon, E. Perre, B. Daffos, P.-L. Taberna, J.-M. Tarascon, P. Simon, Adv. Mater. 22, 4978 (2010).

    Article  CAS  Google Scholar 

  28. H.-S. Min, B.Y. Park, L. Taherabadi, C. Wang, Y. Yeh, R. Zaouk, M.J. Madou, B. Dunn, J. Power Sources 178, 795 (2008).

    Article  CAS  Google Scholar 

  29. F. Chamran, H.-S. Min, B. Dunn, C.-J. Kim, IEEE 20th Int. Conf. Micro Electro Mechanical Systems 2007 (2007), pp. 871–874.

  30. F. Cheng, Z. Tao, J. Liang, J. Chen, Chem. Mater. 20, 667 (2008).

    Article  CAS  Google Scholar 

  31. M.S. Park, Y.M. Kang, G.X. Wang, S.X. Dou, H.K. Liu, Adv. Funct. Mater. 18, 455 (2008).

    Article  CAS  Google Scholar 

  32. W.Y. Li, L.N. Xu, J. Chen, Adv. Funct. Mater. 15, 851 (2005).

    Article  CAS  Google Scholar 

  33. Y. Lan, X.P. Gao, H.Y. Zhu, Z.F. Zheng, T.Y. Yan, F. Wu, S.P. Ringer, D.Y. Song, Adv. Funct. Mater. 15, 1310 (2005).

    Article  CAS  Google Scholar 

  34. N.C. Li, C.R. Martin, J. Electrochem. Soc. 148, A164 (2001).

  35. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol. 3, 31 (2008).

    Article  CAS  Google Scholar 

  36. J. Chen, F. Cheng, Acc. Chem. Res. 42, 713 (2009).

    Article  CAS  Google Scholar 

  37. P.G. Bruce, B. Scrosati, J.M. Tarascon, Angew. Chem. Int. Ed. 47, 2 (2008).

    Article  Google Scholar 

  38. G. Che, K.B. Jirage, E.R. Fisher, C.R. Martin, H. Yoneyama, J. Electrochem. Soc. 144, 4296 (1997).

    Article  CAS  Google Scholar 

  39. M. Winter, J.O. Besenhard, Electrochim. Acta 45, 31 (1999).

    Article  CAS  Google Scholar 

  40. C.P. Rhodes, J.W. Long, M.S. Doescher, B.M. Dening, D.R. Rolison, J. Non-Cryst. Solids 350, 73 (2004).

    Article  CAS  Google Scholar 

  41. R.C. Agrawal, G.P. Pandey, J. Phys. D: Appl. Phys. 41, 223001 (2008).

    Article  Google Scholar 

  42. S.W. Lee, N. Yabuuchi, B.M. Gallant, S. Chen, B.S. Kim, P.T. Hammond, Y. Shao-Horn, Nat. Nanotechnol. 5, 531 (2010).

    Article  CAS  Google Scholar 

  43. O. Bohnke, G. Frand, M. Rezrazi, C. Rousselot, C. Truche, Solid State Ionics 66, 105 (1993).

    Article  CAS  Google Scholar 

  44. S.R. Gowda, A.L.M. Reddy, M.M. Shaijumon, X. Zhan, L. Ci, P.M. Ajayan, Nano Lett. 11, 101 (2011).

    Article  CAS  Google Scholar 

  45. C.P. Rhodes, J.W. Long, M.S. Doescher, J.J. Fontanella, D.R. Rolison, J. Phys. Chem. B 108, 13079 (2004).

    Article  CAS  Google Scholar 

  46. C.P. Rhodes, J.W. Long, D.R. Rolison, Electrochem. Solid-State Lett. 8, A579 (2005).

  47. G. El-Enany, M.J. Lacey, P.A. Johns, J.R. Owen, Electrochem. Commun. 11, 2320 (2009).

    Article  CAS  Google Scholar 

  48. C.P. Rhodes, J.W. Long, K.A. Pettigrew, R.M. Stroud, D.R. Rolison, Nanoscale 3 (2011); DOI:10.1039/c0nr00731e.

  49. J.C. Lytle, J.M. Wallace, M.B. Sassin, A.J. Barrow, J.W. Long, J.L. Dysart, C.H. Renninger, M.P. Saunders, N.L. Brandell, D.R. Rolison, Energy Environ. Sci. 4 (2011); DOI: 10.1039/c0ee00351d.

Download references

Acknowledgements

A.L.P. acknowledges support from the NSF CAREER program (DMR-0956011) as well as the Semiconductor Research Corporation. B.D. acknowledges the financial support of the U.S. Office of Naval Research and the Defense Advanced Research Projects Agency.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arthur, T.S., Bates, D.J., Cirigliano, N. et al. Three-dimensional electrodes and battery architectures. MRS Bulletin 36, 523–531 (2011). https://doi.org/10.1557/mrs.2011.156

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.156

Navigation