Skip to main content
Log in

Undercooling driven growth of Q-carbon, diamond, and graphite

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We provide insights pertaining the dependence of undercooling in the formation of graphite, nanodiamonds, and Q-carbon nanocomposites by nanosecond laser melting of diamond-like carbon (DLC). The DLC films are melted rapidly in a super-undercooled state and subsequently quenched to room temperature. Substrates exhibiting different thermal properties-silicon and sapphire, are used to demonstrate that substrates with lower thermal conductivity trap heat flow, inducing larger undercooling, both experimentally and theoretically via finite element simulations. The increased undercooling facilitates the formation of Q-carbon. The Q-carbon is used as nucleation seeds for diamond growth via laser remelting and hot-filament chemical vapor deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. J. Narayan, V. Godbole, and C. White: Laser method for synthesis and processing of continuous diamond films on nondiamond substrates. Science 252, 416 (1991).

    Article  CAS  Google Scholar 

  2. J. Narayan and A. Bhaumik: Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 118, 215303 (2015).

    Article  Google Scholar 

  3. S. Gupta, A. Bhaumik, R. Sachan, and J. Narayan: Structural Evolution of Q-Carbon and Nanodiamonds. JOM 70, 450 (2018). https://doi.org/10.1007/s11837-017-2714-y.

    Article  CAS  Google Scholar 

  4. J. Heremans, C. Olk, G. Eesley, J. Steinbeck, and G. Dresselhaus: Observation of metallic conductivity in liquid carbon. Phys. Rev. Lett. 60, 452 (1988).

    Article  CAS  Google Scholar 

  5. J. Narayan, and A. Bhaumik: Q-carbon discovery and formation of single-crystal diamond nano-and microneedles and thin films. Mater. Res. Lett. 4, 118 (2016).

    Article  CAS  Google Scholar 

  6. J. Narayan and A. Bhaumik: Research update: direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air. Appl. Phys. Lett. Mater. 3, 100702 (2015).

    Google Scholar 

  7. A. Bhaumik, R. Sachan, S. Gupta, and J. Narayan: Discovery of high-temperature superconductivity (T c = 55 K) in B-Doped Q-Carbon. ACS Nano 11, 11915 (2017).

    Article  CAS  Google Scholar 

  8. J. Narayan, S. Gupta, A. Bhaumik, R. Sachan, F. Cellini, and E. Reido: Q-carbon is harder than diamond. MRS Comm., 1 (2018). doi: 10.1557/mrc.2018.35.

  9. S. Gupta, R. Sachan, A. Bhaumik, and J. Narayan: Superhard Q-carbon nanocomposites J. Appl. Phys. (2018) under review.

    Google Scholar 

  10. A. Bhaumik, S. Nori, R. Sachan, S. Gupta, D. Kumar, A.K. Majumdar, and J. Narayan: Room-temperature ferromagnetism and extraordinary hall effect in nanostructured Q-carbon: implications for potential spintronic devices. ACS Appl. Nano Mater. 1, 807 (2018). doi: 10.1021/acsanm.7b00253.

    Article  CAS  Google Scholar 

  11. A. Bhaumik, R. Sachan, and J. Narayan: High-temperature superconductivity in boron-doped Q-carbon. ACS Nano 11, 11915 (2017). doi: 10.1021/acsnano.7b06888.

    Article  CAS  Google Scholar 

  12. A. Bhaumik, R. Sachan, and J. Narayan: A novel high-temperature carbon-based superconductor: B-doped Q-carbon. J. Appl. Phys. 122, 045301 (2017).

    Article  Google Scholar 

  13. J. Narayan and A. Bhaumik: Novel synthesis and properties of pure and NV-doped nanodiamonds and other nanostructures. Mater. Res. Lett. 5, 242 (2016).

    Article  Google Scholar 

  14. H. Kumomi: Location control of crystal grains in excimer laser crystallization of silicon thin films. Appl. Phys. Lett. 83, 434 (2003).

    Article  CAS  Google Scholar 

  15. M. Shamsa, W. Liu, A. Balandin, C. Casiraghi, W. Milne, and A. Ferrari: Thermal conductivity of diamond-like carbon films. Appl. Phys. Lett. 89, 161921 (2006).

    Article  Google Scholar 

  16. J. Steinbeck, G. Dresselhaus, and M. Dresselhaus: The properties of liquid carbon. Int. J. Therm. 11, 789 (1990).

    Article  CAS  Google Scholar 

  17. C.Y. Ho, R.W. Powell, and P.E. Liley: Thermal conductivity of the elements: a comprehensive review, (NATIONAL STANDARD REFERENCE DATA SYSTEM 1974).

    Google Scholar 

  18. R. Sachan, S. Yadavali, N. Shirato, H. Krishna, V. Ramos, G. Duscher, S.J. Pennycook, A. Gangopadhyay, H. Garcia, and R. Kalyanaraman: Self-organized bimetallic ag–co nanoparticles with tunable localized surface plasmons showing high environmental stability and sensitivity. Nanotechnology 23, 275604 (2012).

    Article  CAS  Google Scholar 

  19. R. Sachan, V. Ramos, A. Malasi, S. Yadavali, B. Bartley, H. Garcia, G. Duscher, and R. Kalyanaraman: Oxidation-resistant silver nanostructures for ultrastable plasmonic applications. Adv. Mater. 25, 2045 (2013).

    Article  CAS  Google Scholar 

  20. R. Sachan, A. Malasi, J. Ge, S. Yadavali, H. Krishna, A. Gangopadhyay, H. Garcia, G. Duscher, and R. Kalyanaraman: Ferroplasmons: intense localized surface plasmons in metal-ferromagnetic nanoparticles. ACS Nano 8, 9790 (2014).

    Article  CAS  Google Scholar 

  21. J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman: Pulsed-laser-induced dewetting in nanoscopic metal films: theory and experiments. Phys. Rev. B 75, 235439 (2007).

    Article  Google Scholar 

  22. A. Bhaumik, and J. Narayan: Wafer scale integration of reduced graphene oxide by novel laser processing at room temperature in air. J. Appl. Mater. 10, 105304 (2016).

    Google Scholar 

  23. A. Bhaumik, and J. Narayan: Synthesis and characterization of quenched and crystalline phases: Q-carbon, Q-BN, diamond and phase-pure c-BN. JOM 70, 456 (2018).

    Article  CAS  Google Scholar 

  24. J. Narayan: Dislocations, twins, and grain boundaries in CVD diamond thin films: atomic structure and properties. J. Mater. Res. 5, 2414 (1990).

    Article  CAS  Google Scholar 

  25. K. Jackson: Crystal Growth and Phase Formation. In Surface Modification and Alloying, edited by J.M. Poate, G. Foti and D.C. Jacobson (Springer, Boston, MA, 1983) p. 51.

    Chapter  Google Scholar 

  26. J. Narayan: Interface structures during solid-phase-epitaxial growth in ion implanted semiconductors and a crystallization model. J. Appl. Phys. 53, 8607 (1982).

    Article  CAS  Google Scholar 

  27. F. Spaepen, D. Turnbull, J. Poate, and J. Mayer: Laser annealing of semiconductors. In Laser Annealing of Semiconductors, edited by J.M. Poate and J.W. Mayor (Academic, New York, 1982), p. 15.

    Google Scholar 

  28. A. Cullis, N. Chew, H. Webber, and D.J. Smith: Orientation dependence of high speed silicon crystal growth from the melt. J. Crys. Grow. 68, 624 (1984).

    Article  CAS  Google Scholar 

  29. R.K. Singh and J. Narayan: A novel method for simulating laser-solid interactions in semiconductors and layered structures. Mater. Sci. Engg.: B 3, 217 (1989).

    Article  Google Scholar 

Download references

Acknowledgment

We are thankful to the Fan Family Foundation Distinguished Chair Endowment for J. Narayan. R. Sachan acknowledges National Academy of Sciences (NAS), USA for awarding the NRC research fellowship. This work was performed under the National Science Foundation Award number DMR-1735695. We used Analytical Instrumentation Facility (AIF) at North Carolina State University for performing the structural characterization of thin films.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdish Narayan.

Competing Financial Interests statement

Competing Financial Interests statement

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Sachan, R., Bhaumik, A. et al. Undercooling driven growth of Q-carbon, diamond, and graphite. MRS Communications 8, 533–540 (2018). https://doi.org/10.1557/mrc.2018.76

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.76

Navigation