Skip to main content
Log in

Molecular valves for colloidal growth of nanocrystal quantum dots: effect of precursor decomposition and intermediate species

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The ability to manipulate matter on the nanometer length scale is an important scientific goal, and the progress in the field of colloidal nanocrystal (NC) growth in the past decades has opened avenue for controlled synthesis of nanoscale materials with many unique physical properties that could enhance existing technologies or give rise to entirely new technologic applications. At the center of the progress is ever-increasing understanding on molecular interactions within colloidal synthesis, in which nucleation and growth each plays a critical role in the control of size, shape, morphology, and structure of NCs. Semiconductor NCs in quantum confinement regime, referred to as quantum dots (QDs), highlight the importance of such control over geometric parameters, since QDs exhibit size- and shape-dependent optical properties. In this paper, we demonstrate important aspects that govern QDs growth in the context of (i) precursor conversion chemistry, and (ii) intermediate species including molecular complex and clusters. Advances in understanding the growth chemistry of QDs have proved the significance of how precursors decompose and produce intermediate species. We review recent progress in regards to the synthetic chemistry of colloidal QDs and discuss our perspective on challenges and promises in the controlled large-scale synthesis of QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. A.P. Alivisatos: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).

    Article  CAS  Google Scholar 

  2. A.P. Alivisatos: Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226 (1996).

    Article  CAS  Google Scholar 

  3. J. Owen and L. Brus: Chemical synthesis and luminescence applications of colloidal semiconductor quantum dots. J. Am. Chem. Soc. 139, 10939 (2017).

    Article  CAS  Google Scholar 

  4. D.V. Talapin, J.-S. Lee, M.V. Kovalenko, and E.V. Shevchenko: Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389 (2009).

    Article  CAS  Google Scholar 

  5. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A.P. Alivisatos: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013 (1998).

    Article  CAS  Google Scholar 

  6. B.A. Kairdolf, A.M. Smith, T.H. Stokes, M.D. Wang, A.N. Young, and S. Nie: Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu. Rev. Anal. Chem. 6, 143 (2013).

    Article  CAS  Google Scholar 

  7. S.A. McDonald, G. Konstantatos, S. Zhang, P.W. Cyr, E.J. Klem, L. Levina, and E.H. Sargent: Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138 (2005).

    Article  CAS  Google Scholar 

  8. G.I. Koleilat, L. Levina, H. Shukla, S.H. Myrskog, S. Hinds, A.G. Pattantyus-Abraham, and E.H. Sargent: Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS nano 2, 833 (2008).

    Article  CAS  Google Scholar 

  9. P.V. Kamat: Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737 (2008).

    Article  CAS  Google Scholar 

  10. N.T.N. Truong, H.H.T. Hoang, T.K. Trinh, V.T.H. Pham, R.P. Smith, and C. Park: Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance. Korean J. Chem. Eng. 34, 1208 (2017).

    Article  CAS  Google Scholar 

  11. Z. Kang, C.H.A. Tsang, N.-B. Wong, Z. Zhang, and S.-T. Lee: Silicon quantum dots: a general photocatalyst for reduction, decomposition, and selective oxidation reactions. J. Am. Chem. Soc. 129, 12090 (2007).

    Article  CAS  Google Scholar 

  12. C. Harris and P.V. Kamat: Photocatalysis with CdSe nanoparticles in confined media: mapping charge transfer events in the subpicosecond to second timescales. ACS Nano 3, 682 (2009).

    Article  CAS  Google Scholar 

  13. W.D. Kim, J.H. Kim, S. Lee, J.Y. Woo, K. Lee, W.S. Chae, S. Jeong, W.K. Bae, J.A. McGuire, J.H. Moon, M.S. Jeong, and D.C. Lee: Role of surface states in photocatalysis: study of chlorine-passivated CdSe nanocrystals for photocatalytic hydrogen generation. Chem. Mater. 28, 962 (2016).

    Article  CAS  Google Scholar 

  14. Y. Sung, J. Lim, J.H. Koh, B.K. Min, J. Pyun, and K. Char: Arm length dependency of Pt-decorated CdSe tetrapods on the performance of photocatalytic hydrogen generation. Korean J. Chem. Eng. 33, 2287 (2016).

    Article  CAS  Google Scholar 

  15. Y. Shirasaki, G.J. Supran, M.G. Bawendi, and V. Bulović: Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 7, 13 (2013).

    Article  CAS  Google Scholar 

  16. P.O. Anikeeva, J.E. Halpert, M.G. Bawendi, and V. Bulovic: Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett. 9, 2532 (2009).

    Article  CAS  Google Scholar 

  17. L. Brus: Zero-dimensional “excitons” in semiconductor clusters. IEEE J. Quantum Electron. 22, 1909 (1986).

    Article  Google Scholar 

  18. R. Rossetti, J. Ellison, J. Gibson, and L.E. Brus: Size effects in the excited electronic states of small colloidal CdS crystallites. J. Chem. Phys. 80, 4464 (1984).

    Article  CAS  Google Scholar 

  19. Y. Lee, J. Kim, J.H. Koo, T.H. Kim, and D.H. Kim: Nanomaterials for bioelectronics and integrated medical systems. Korean J. Chem. Eng. 35, 1 (2018).

    Article  CAS  Google Scholar 

  20. C. Murray, D.J. Norris, and M.G. Bawendi: Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706 (1993).

    Article  CAS  Google Scholar 

  21. P. Reiss, M. Protiere, and L. Li: Core/shell semiconductor nanocrystals. Small 5, 154 (2009).

    Article  CAS  Google Scholar 

  22. B.G. Jeong, Y.S. Park, J.H. Change, I. Cho, J.K. Kim, H. Kim, K. Char, J. Cho, V.I. Klimov, P. Park, D.C. Lee, and W.K. Bae: Colloidal spherical quantum wells with near-unity photoluminescence quantum yield and suppressed blinking. ACS Nano 10, 9297 (2016).

    Article  CAS  Google Scholar 

  23. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A.P. Alivisatos: Shape control of CdSe nanocrystals. Nature 404, 59 (2000).

    Article  CAS  Google Scholar 

  24. S. Ithurria, M.D. Tessier, B. Mahler, R.P.S.M. Lobo, B. Dubertret, and A.L. Efros: Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 10, 936 (2011).

    Article  CAS  Google Scholar 

  25. D.E. Yoon, W.D. Kim, D. Kim, D. Lee, S. Koh, W.K. Bae, and D.C. Lee: Origin of shape-dependent fluorescence polarization from CdSe nanoplatelets. J. Phys. Chem. C 121, 24837 (2017).

    Article  CAS  Google Scholar 

  26. S.K. Seo, H. Heo, J. Lim, and K. Char: Scattering model for tetrapods with cylindrical arms. Korean J. Chem. Eng. 34, 1192 (2017).

    Article  CAS  Google Scholar 

  27. D.C. Lee, T. Hanrath, and B.A. Korgel: The role of precursor-decomposition kinetics in silicon-nanowire synthesis in organic solvents. Angew. Chem. Int. Ed. 44, 3573 (2005).

    Article  CAS  Google Scholar 

  28. S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss: Chemistry of InP nanocrystal syntheses. Chem. Mater. 28, 2491 (2016).

    Article  CAS  Google Scholar 

  29. D. Aldakov, A. Lefrançois, and P. Reiss: Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J. Mater. Chem. C 1, 3756 (2013).

    Article  CAS  Google Scholar 

  30. C. Gensch, Y. Baron, and M. Blepp: Assistance to the Commission on Technological Socio-Economic and Cost-Benefit Assessment Related to Exemptions from the Substance Restrictions in Electrical and Electronic Equipment: Pack 10 Final Report. Oeko-Institut e.V., Institute for Applied Ecology (2016).

    Google Scholar 

  31. Z.A. Peng and X. Peng: Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183 (2001).

    Article  CAS  Google Scholar 

  32. A. Kortan, R. Hull, R.L. Opila, M.G. Bawendi, M.L. Steigerwald, P.J. Carroll, and L.E. Brus: Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc. 112, 1327 (1990).

    Article  CAS  Google Scholar 

  33. R.L. Wells, S.R. Aubuchon, S.S. Kher, M.S. Lube, and P.S. White: Synthesis of nanocrystalline indium arsenide and indium phosphide from indium (III) halides and tris(trimethylsilyl)pnicogens. Synthesis, characterization, and decomposition behavior of I3In P(SiMe3)3. Chem. Mater. 7, 793 (1995).

    Article  CAS  Google Scholar 

  34. A. Guzelian, J.E.B. Katari, A.V. Kadavanich, U. Banin, K. Hamad, E. Juban, A.P. Alivisatos, R.H. Wolters, C.C. Arnold, and J.R. Heath: Synthesis of size-selected, surface-passivated InP nanocrystals. J. Phys. Chem. 100, 7212 (1996).

    Article  CAS  Google Scholar 

  35. O. Micic, J.R. Sprague, C.J. Curtis, K.M. Jones, J.L. Machol, A.J. Nozik, H. Giessen, B. Fluegel, G. Mohs, and N. Peyghambarian: Synthesis and characterization of InP, GaP, and GaInP2 quantum dots. J. Phys. Chem. 99, 7754 (1995).

    Article  CAS  Google Scholar 

  36. D. Battaglia and X. Peng: Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2, 1027 (2002).

    Article  CAS  Google Scholar 

  37. P.M. Allen, B.J. Walker, and M.G. Bawendi: Mechanistic insights into the formation of InP quantum dots. Angew. Chem. Int. Ed. 49, 760 (2010).

    Article  CAS  Google Scholar 

  38. D.Q. Vo, D.D. Dung, S. Cho, and S. Kim: A simple synthesis of Ag2+xSe nanoparticles and their thin films for electronic device applications. Korean J. Chem. Eng. 33, 305 (2016).

    Article  CAS  Google Scholar 

  39. J. van Embden, A.S. Chesman, and J.J. Jasieniak: The heat-up synthesis of colloidal nanocrystals. Chem. Mater. 27, 2246 (2015).

    Article  CAS  Google Scholar 

  40. H. Du, C. Chen, R. Krishnan, T.D. Krauss, J.M. Harbold, F.W. Wise, M.G. Thomas, and J. Silcox: Optical properties of colloidal PbSe nanocrystals. Nano Lett. 2, 1321 (2002).

    Article  CAS  Google Scholar 

  41. O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y.C. Cao: Synthesis of metal-selenide nanocrystals using selenium dioxide as the selenium precursor. Angew. Chem. Int. Ed. 47, 8638 (2008).

    Article  CAS  Google Scholar 

  42. D. Pan, Q. Wang, S. Jiang, X. Ji, and L. An: Low-temperature synthesis of oil-soluble CdSe, CdS, and CdSe/CdS core−shell nanocrystals by using various water-soluble anion precursors. J. Phys. Chem. C 111, 5661 (2007).

    Article  CAS  Google Scholar 

  43. M.P. Campos, M.P. Hendricks, A.N. Beecher, W. Walravens, R.A. Swain, G.T. Cleveland, Z. Hens, M.Y. Sfeir, and J.S. Owen: A library of selenourea precursors to PbSe nanocrystals with size distributions near the homogeneous limit. J. Am. Chem. Soc. 139, 2296 (2017).

    Article  CAS  Google Scholar 

  44. S. Jun, E. Jang, and Y. Chung: Alkyl thiols as a sulfur precursor for the preparation of monodisperse metal sulfide nanostructures. Nanotechnology 17, 4806 (2006).

    Article  CAS  Google Scholar 

  45. J. Joo, H.B. Na, T. Yu, J.H. Yu, Y.W. Kim, F. Wu, J.Z. Zhang, and T. Hyeon: Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. J. Am. Chem. Soc. 125, 11100 (2003).

    Article  CAS  Google Scholar 

  46. Y.A. Yang, H. Wu, K.R. Williams, and Y.C. Cao: Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew. Chem. 117, 6870 (2005).

    Article  Google Scholar 

  47. R.L. García-Rodríguez and H. Liu: Mechanistic study of the synthesis of CdSe nanocrystals: release of selenium. J. Am. Chem. Soc. 134, 1400 (2012).

    Article  CAS  Google Scholar 

  48. C.M. Evans, M.E. Evans, and T.D. Krauss: Mysteries of TOPSe revealed: insights into quantum dot nucleation. J. Am. Chem. Soc. 132, 10973 (2010).

    Article  CAS  Google Scholar 

  49. D.K. Harris and M.G. Bawendi: Improved precursor chemistry for the synthesis of III-V quantum dots. J. Am. Chem. Soc. 134, 20211 (2012).

    Article  CAS  Google Scholar 

  50. S. Joung, S. Yoon, C.-S. Han, Y. Kim, and S. Jeong: Facile synthesis of uniform large-sized InP nanocrystal quantum dots using tris(tert-butyldimethylsilyl)phosphine. Nanoscale Res. Lett. 7, 93 (2012).

    Article  CAS  Google Scholar 

  51. D.C. Gary, B.A. Glassy, and B.M. Cossairt: Investigation of indium phosphide quantum dot nucleation and growth utilizing triarylsilylphosphine precursors. Chem. Mater. 26, 1734 (2014).

    Article  CAS  Google Scholar 

  52. D. Franke, D.K. Harris, L. Xie, K.F. Jensen, and M.G. Bawendi: The unexpected influence of precursor conversion rate in the synthesis of III-V quantum dots. Angew. Chem. Int. Ed. 54, 14299 (2015).

    Article  CAS  Google Scholar 

  53. M.D. Tessier, D. Dupont, K. De Nolf, J. De Roo, and Z. Hens: Economic and size-tunable synthesis of InP/ZnE (E = S, Se) colloidal quantum dots. Chem. Mater. 27, 4893 (2015).

    Article  CAS  Google Scholar 

  54. W.S. Song, H.S. Lee, J.C. Lee, D.S. Jang, Y. Choi, M. Choi, and H. Yang: Amine-derived synthetic approach to color-tunable InP/ZnS quantum dots with high fluorescent qualities. J. Nanopart. Res. 15, 1750 (2013).

    Article  Google Scholar 

  55. V. Chandrasekaran, M.D. Tessier, D. Dupont, P. Geiregat, Z. Hens, and E. Brainis: Nearly blinking-free, high-purity single-photon emission by colloidal InP/ZnSe quantum dots. Nano Lett. 17, 6104 (2017).

    Article  CAS  Google Scholar 

  56. P. Ramasamy, N. Kim, Y.-S. Kang, O. Ramirez, and J.-S. Lee: Tunable, bright, and narrow-band luminescence from colloidal indium phosphide quantum dots. Chem. Mater. 29, 6893 (2017).

    Article  CAS  Google Scholar 

  57. F. Pietra, N. Kirkwood, L.D. Trizio, A.W. Hoekstra, L. Kleibergen, N. Renaud, P. Baesjou, L. Manna, and A.J. Houtepen: Ga for Zn cation exchange allows for highly luminescent and photostable InZnP-based quantum dots. Chem. Mater. 29, 5192 (2017).

    Article  CAS  Google Scholar 

  58. A. Buffard, S. Dreyfuss, B. Nadal, H. Heuclin, X. Xu, G. Patriarche, N. Mezailles, and B. Dubertret: Mechanistic insight and optimization of InP nanocrystals synthesized with aminophosphines. Chem. Mater. 28, 5925 (2016).

    Article  CAS  Google Scholar 

  59. M.D. Tessier, K.D. Nolf, D. Dupont, D. Sinnaeve, J.D. Roo, and Z. Hens: Aminophosphines: a double role in the synthesis of colloidal indium phosphide quantum dots. J. Am. Chem. Soc. 138, 5923 (2016).

    Article  CAS  Google Scholar 

  60. V. Grigel, D. Dupont, K. De Nolf, Z. Hens, and M.D. Tessier: InAs colloidal quantum dots synthesis via aminopnictogen precursor chemistry. J. Am. Chem. Soc. 138, 13485 (2016).

    Article  CAS  Google Scholar 

  61. E. Bang, Y. Choi, J. Cho, Y.H. Suh, H.W. Ban, J.S. Son, and J. Park: Large-scale synthesis of highly luminescent InP@ZnS quantum dots using elemental phosphorus precursor. Chem. Mater. 29, 4236 (2017).

    Article  CAS  Google Scholar 

  62. R. Panzer, C. Guhrenz, D. Haubold, R. Hubner, N. Gaponik, A. Eychmuller, and J. Weigand: Versatile tri(pyrazolyl) phosphanes as phosphorus precursors for the synthesis of highly emitting InP/ZnS quantum dots. Angew. Chem. Int. Ed. 56, 14737 (2017).

    Article  CAS  Google Scholar 

  63. M.A. Boles, D. Ling, T. Hyeon, and D.V. Talapin: The surface science of nanocrystals. Nat. Mater. 15, 141 (2016).

    Article  CAS  Google Scholar 

  64. Y. Yin and A.P. Alivisatos: Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437, 664 (2004).

    Article  CAS  Google Scholar 

  65. W.W. Yu and X. Peng: Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew. Chem. Int. Ed. 41, 2368 (2002).

    Article  CAS  Google Scholar 

  66. D.C. Gary and B.M. Cossairt: Role of acid in precursor conversion during InP quantum dot synthesis. Chem. Mater. 25, 2463 (2013).

    Article  CAS  Google Scholar 

  67. G.G. Yordanov, H. Yoshimura, and C.D. Dushkin: Fine control of the growth and optical properties of CdSe quantum dots by varying the amount of stearic acid in a liquid paraffin matrix. Colloids. Surf. A Physicochem. Eng. Asp. 322, 177 (2008).

    Article  CAS  Google Scholar 

  68. I. Nakonechnyi, M. Sluydts, Y. Justo, J. Jasieniak, and Z. Hens: Mechanistic insights in seeded growth synthesis of colloidal core/shell quantum dots. Chem. Mater. 29, 4719 (2017).

    Article  CAS  Google Scholar 

  69. A. Puzder, A.J. Williamson, N. Zaitseva, and G. Galli: The effect of organic ligand binding on the growth of CdSe nanoparticles probed by Ab initio calculations. Nano Lett. 4, 2361 (2004).

    Article  CAS  Google Scholar 

  70. W. Wang, S. Banerjee, S. Jia, M.L. Steigerwald, and I.P. Herman: Ligand control of growth, morphology, and capping structure of colloidal CdSe nanorods. Chem. Mater. 19, 2573 (2007).

    Article  CAS  Google Scholar 

  71. D. Kim, Y.K. Lee, D. Lee, W.D. Kim, W.K. Bae, and D.C. Lee: Colloidal dual-diameter and core-position-controlled core/shell cadmium chalcogenide nanorods. ACS nano 11, 12461 (2017).

    Article  CAS  Google Scholar 

  72. J.Y. Kim, A.H. Steeves, and H.J. Kulik: Harnessing organic ligand libraries for first-principles inorganic discovery: indium phosphide quantum dot precursor design strategies. Chem. Mater. 29, 3632 (2017).

    Article  CAS  Google Scholar 

  73. E. Ryu, S. Kim, E. Jang, S. Jun, H. Jang, B. Kim, and S.W. Kim: Step-wise synthesis of InP/ZnS core−shell quantum dots and the role of zinc acetate. Chem. Mater. 21, 573 (2009).

    Article  CAS  Google Scholar 

  74. X. Yang, D. Zhao, K.S. Leck, S.T. Tan, Y.X. Tang, J. Zhao, H.V. Demir, and X.W. Sun: Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes. Adv. Mater. 24, 4180 (2012).

    Article  CAS  Google Scholar 

  75. H. Liu, J.S. Owen, and A.P. Alivisatos: Mechanistic study of precursor evolution in colloidal group II−VI semiconductor nanocrystal synthesis. J. Am. Chem. Soc. 129, 305 (2007).

    Article  CAS  Google Scholar 

  76. L.C. Frenette and T.D. Krauss: Uncovering active precursors in colloidal quantum dot synthesis. Nat. Commun. 8, 2082 (2017).

    Article  CAS  Google Scholar 

  77. U.T.D. Thuy, P. Reiss, and N.Q. Liem: Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots. Appl. Phys. Lett. 97, 193104 (2010).

    Article  CAS  Google Scholar 

  78. J. Lim, W.K. Bae, D. Lee, M.K. Nam, J. Jung, C. Lee, K. Char, and S. Lee: InP@ZnSeS, Core@Composition gradient shell quantum dots with enhanced stability. Chem. Mater. 23, 4459 (2011).

    Article  CAS  Google Scholar 

  79. S. Koh, T. Eom, W.D. Kim, K. Lee, D. Lee, Y.K. Lee, H. Kim, W.K. Bae, and D.C. Lee: Zinc-phosphorus complex working as an atomic valve for colloidal growth of monodisperse indium phosphide quantum dots. Chem. Mater. 29, 6346 (2017).

    Article  CAS  Google Scholar 

  80. P. Ramasamy, K.-J. Ko, J.-W. Kang, and J.-S. Lee: Two step “seed-mediated” synthetic approach to colloidal indium phosphide quantum dots with high-purity photo-and electroluminescence. Chem. Mater. 30, 3643 (2018).

    Article  CAS  Google Scholar 

  81. L.S. Li, N. Pradhan, Y. Wang, and X. Peng: High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett. 4, 2261 (2004).

    Article  CAS  Google Scholar 

  82. R. Xie, D. Battaglia, and X. Peng: Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 129, 15432 (2007).

    Article  CAS  Google Scholar 

  83. D.C. Gary, A. Petrone, X. Li, and B.M. Cossairt: Investigating the role of amine in InP nanocrystal synthesis: destabilizing cluster intermediates by Z-type ligand displacement. Chem. Commun. 53, 161 (2017).

    Article  CAS  Google Scholar 

  84. K. Yu: CdSe magic-sized nuclei, magic-sized nanoclusters and regular nanocrystals: monomer effects on nucleation and growth. Adv. Mater. 24, 1123 (2012).

    Article  CAS  Google Scholar 

  85. S. Kudera, M. Zanella, C. Giannini, A. Rizzo, Y. Li, G. Gigli, R. Cingolani, G. Ciccarella, W. Spahl, W.J. Parak, and L. Manna: Sequential growth of magic-size CdSe nanocrystals. Adv. Mater. 19, 548 (2007).

    Article  CAS  Google Scholar 

  86. P. Dagtepe, V. Chikan, J. Jasinski, and V.J. Leppert: Quantized growth of CdTe quantum dots; observation of magic-sized CdTe quantum dots. J. Phys. Chem. C 111, 14977 (2007).

    Article  CAS  Google Scholar 

  87. C.M. Evans, L. Guo, J.J. Peterson, S. Maccagnano-Zacher, and T.D. Krauss: Ultrabright PbSe magic-sized clusters. Nano Lett. 8, 2896 (2008).

    Article  CAS  Google Scholar 

  88. B.M. Cossairt: Shining light on indium phosphide quantum dots: understanding the interplay among precursor conversion, nucleation, and growth. Chem. Mater. 28, 7181 (2016).

    Article  CAS  Google Scholar 

  89. M.J. Bowers, J.R. McBride, and S.J. Rosenthal: White-light emission from magic-sized cadmium selenide nanocrystals. J. Am. Chem. Soc. 127, 15378 (2005).

    Article  CAS  Google Scholar 

  90. J. Ouyang, M.B. Zaman, F.J. Yan, D. Johnston, G. Li, X. Wu, D. Leek, C.I. Ratcliffe, J.A. Ripmeester, and K. Yu: Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses. J. Phys. Chem. C 112, 13805 (2008).

    Article  CAS  Google Scholar 

  91. J. Li, H. Wang, L. Lin, Q. Fang, and X. Peng: Quantitative identification of basic growth channels for formation of monodisperse nanocrystals. J. Am. Chem. Soc. 140, 5474 (2018).

    Article  CAS  Google Scholar 

  92. Z.-J. Jiang and D.F. Kelley: Role of magic-sized clusters in the synthesis of CdSe nanorods. ACS Nano 4, 1561 (2010).

    Article  CAS  Google Scholar 

  93. Y. Wang, Y. Zhang, F. Wang, D.E. Giblin, J. Hoy, H.W. Rohrs, R.A. Loomis, and W.E. Buhro: The magic-size nanocluster (CdSe)34 as a low-temperature nucleant for cadmium selenide nanocrystals; room-temperature growth of crystalline quantum platelets. Chem. Mater. 26, 2233 (2014).

    Article  CAS  Google Scholar 

  94. L.G. Gutsev, B.R. Ramachandran, and G.L. Gutsev: Pathways of growth of CdSe nanocrystals from nucleant (CdSe)34 clusters. J. Phys. Chem. C 122, 3168 (2018).

    Article  CAS  Google Scholar 

  95. Y. Liu, B. Zhang, H. Fan, N. Rowell, M. Willis, X. Zheng, R. Che, S. Han, and K. Yu: Colloidal CdSe 0-dimension nanocrystals and their self-assembled 2-dimension structures. Chem. Mater. 30, 1575 (2018).

    Article  CAS  Google Scholar 

  96. D.C. Gary, M.W. Terban, S.J. Billinge, and B.M. Cossairt: Two-step nucleation and growth of InP quantum dots via magic-sized cluster intermediates. Chem. Mater. 27, 1432 (2015).

    Article  CAS  Google Scholar 

  97. L. Xie, Y. Shen, D. Franke, V. Sebastian, M.G. Bawendi, and K.F. Jensen: Characterization of indium phosphide quantum dot growth intermediates using MALDI-TOF mass spectrometry. J. Am. Chem. Soc. 138, 13469 (2016).

    Article  CAS  Google Scholar 

  98. J.Y. Woo, S. Lee, S. Lee, W.D. Kim, K. Lee, K. Kim, H.J. An, D.C. Lee, and S. Jeong: Air-stable PbSe nanocrystals passivated by phosphonic acids. J. Am. Chem. Soc. 138, 876 (2016).

    Article  CAS  Google Scholar 

  99. W.K. Koh, S. Park, and Y. Ham: Phosphonic acid stabilized colloidal CsPbX3 (X = Br, I) perovskite nanocrystals and their surface chemistry. ChemistrySelect 1, 3479 (2016).

    Article  CAS  Google Scholar 

  100. S. Tamang, S. Lee, H. Choi, and S. Jeong: Tuning size and size distribution of colloidal InAs nanocrystals via continuous supply of prenucleation clusters on nanocrystal seeds. Chem. Mater. 28, 8119 (2016).

    Article  CAS  Google Scholar 

  101. J.L. Stein, M.I. Steimle, M.W. Terban, A. Petrone, S.J. Billinge, X. Li, and B.M. Cossairt: Cation exchange induced transformation of InP magic-sized clusters. Chem. Mater. 29, 7984 (2017).

    Article  CAS  Google Scholar 

  102. J. Ning and U. Banin: Magic size InP and InAs clusters: synthesis, characterization and shell growth. Chem. Commun. 53, 2626 (2017).

    Article  CAS  Google Scholar 

  103. L. De Trizio and L. Manna: Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 116, 10852 (2016).

    Article  CAS  Google Scholar 

  104. S.E. Wark, C.-H. Hsia, and D.H. Son: Effects of ion solvation and volume change of reaction on the equilibrium and morphology in cation-exchange reaction of nanocrystals. J. Am. Chem. Soc. 130, 9550 (2008).

    Article  CAS  Google Scholar 

  105. D. Lee, W.D. Kim, S. Lee, W.K. Bae, S. Lee, and D.C. Lee: Direct Cd-to-Pb exchange of CdSe nanorods into PbSe/CdSe axial heterojunction nanorods. Chem. Mater. 27, 5295 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Research Foundation (NRF) grants funded by the Korean Government (NRF-2016M3A7B4910618 and NRF-2017R1A2B2011066), by the Ministry of Trade, Industry & Energy (MOTIE, Korea) under Industrial Strategic Technology Development Program No. 10077471, “Development of core technology for highly efficient and stable, non-cadmium QLED materials”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doh C. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, S., Lee, D.C. Molecular valves for colloidal growth of nanocrystal quantum dots: effect of precursor decomposition and intermediate species. MRS Communications 8, 742–753 (2018). https://doi.org/10.1557/mrc.2018.129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.129

Navigation