Skip to main content
Log in

Preparation of TiO2-(B)/SnO2 nanostructured composites and its performance as anodes for lithium-ion batteries

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

TiO2-(B)/SnO2 nanostructured composites have been prepared by the combination of an oil-in-water (O/W) microemulsion reaction method (MRM) and a hydrothermal method. Its electrochemical properties were investigated as anode materials in lithium-ion battery, and characterization was carried out by XRD, BET, Raman, FE-SEM, EDXS, and TEM. The as-prepared composites consisted of monoclinic phase TiO2-(B) nanoribbons decorated with cassiterite structure SnO2 nanoparticles. The electrochemical performance of the TiO2-(B)/SnO2 50/50 nanocomposite electrode showed higher reversible capacity of 265 mAh/g than that of the pure SnO2 electrode, 79 mAh/g, after 50 cycles at 0.1 C in a voltage range of 0.01-3.0 V at room temperature. In addition, the coulombic efficiency of the TiO2-(B)/SnO2 50/50 nanocomposite remains at an average greater than 90% from the 2nd to the 50th cycles. The TiO2-(B)/SnO2 50/50 nanocomposite presented the best balance between the mechanical support effect provided by TiO2-(B) that also contributes to the LIB capacity and the SnO2 that provides high specific capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
TABLE 1:
Figure 5:
Figure 6:
TABLE 2:
Figure 7:
TABLE 3:

Similar content being viewed by others

References

  1. X. Zhu, S.S. Jan, F. Zan, Y. Wang, and H. Xia: Hierarchically branched TiO2@SnO2 nanofibers as high performance anodes for lithium-ion batteries. Mater. Res. Bull. 96, 405 (2017).

    Article  CAS  Google Scholar 

  2. D.-A. Zhang, Q. Wang, Q. Wang, J. Sun, L.-L. Xing, and X.-Y. Xue: Core–shell SnO2@TiO2–B nanowires as the anode of lithium ion battery with high capacity and rate capability. Mater. Lett. 128, 295 (2014).

    Article  CAS  Google Scholar 

  3. Z. Yang, G. Du, Q. Meng, Z. Guo, X. Yu, Z. Chen, T. Guo, and R. Zeng: Dispersion of SnO2 nanocrystals on TiO2(B) nanowires as anode material for lithium ion battery applications. RSC Adv. 1, 1834 (2011).

    Article  CAS  Google Scholar 

  4. S. Liu, K. Zhu, J. Tian, W. Zhang, S. Bai, and Z. Shan: Submicron-sized mesoporous anatase TiO2 beads with trapped SnO2 for long-term, high-rate lithium storage. J. Alloys Compd. 639, 60 (2015).

    Article  CAS  Google Scholar 

  5. J. Hou, R. Wu, P. Zhao, A. Chang, G. Ji, B. Gao, and Q. Zhao: Graphene–TiO2(B) nanowires composite material: Synthesis, characterization and application in lithium-ion batteries. Mater. Lett. 100, 173 (2013).

    Article  CAS  Google Scholar 

  6. H.-Y. Wu, M.-H. Hon, C.-Y. Kuan, and I.-C. Leu: Synthesis of TiO2(B)/SnO2 composite materials as an anode for lithium-ion batteries. Ceram. Int. 41, 9527 (2015).

    Article  CAS  Google Scholar 

  7. M. Sanchez-Dominguez, L.F. Liotta, G. Di Carlo, G. Pantaleo, A.M. Venezia, C. Solans, and M. Boutonnet: Synthesis of CeO2, ZrO2, Ce0.5 Zr0.5 O2, and TiO2 nanoparticles by a novel oil-in-water microemulsion reaction method and their use as catalyst support for CO oxidation. Catal. Today 158, 35 (2010).

    Article  CAS  Google Scholar 

  8. C. Tiseanu, V.I. Parvulescu, M. Boutonnet, B. Cojocaru, P.A. Primus, C.M. Teodorescu, C. Solans, and M.S. Dominguez: Surface versus volume effects in luminescent ceria nanocrystals synthesized by an oil-in-water microemulsion method. Phys. Chem. Chem. Phys. 13, 17135 (2011).

    Article  CAS  Google Scholar 

  9. M. Sanchez-Dominguez, H. Koleilat, M. Boutonnet, and C. Solans: Synthesis of Pt nanoparticles in oil-in-water microemulsions: Phase behavior and effect of formulation parameters on nanoparticle characteristics. J. Dispersion Sci. Technol. 32, 1765 (2011).

    Article  CAS  Google Scholar 

  10. K. Pemartin, C. Solans, G. Vidal-Lopez, and M. Sanchez-Dominguez: Synthesis of ZnO and ZnO2 nanoparticles by the oil-in-water microemulsion reaction method. Chem. Lett. 41, 1032 (2012).

    Article  CAS  Google Scholar 

  11. M.L. Gabriella Di Carlo, A.M. Venezia, M. Boutonnet, and M. Sanchez-Dominguez: Design of cobalt nanoparticles with tailored structural and morphological properties via O/W and W/O microemulsions and their deposition onto silica. Catalysts 5, 442 (2015).

    Article  Google Scholar 

  12. N. Pineda-Aguilar, L.L. Garza-Tovar, E.M. Sánchez-Cervantes, and M. Sánchez-Domínguez: Preparation of TiO2–(B) by microemulsion mediated hydrothermal method: Effect of the precursor and its electrochemical performance. J. Mater. Sci.: Mater. Electron. 29 (2018).

  13. M. Sanchez-Dominguez, M. Boutonnet, and C. Solans: A novel approach to metal and metal oxide nanoparticle synthesis: The oil-in-water microemulsion reaction method. J. Nanopart. Res. 11, 1823 (2009).

    Article  CAS  Google Scholar 

  14. M. Sanchez-Dominguez, K. Pemartin, and M. Boutonnet: Preparation of inorganic nanoparticles in oil-in-water microemulsions: A soft and versatile approach. Curr. Opin. Colloid Interface Sci. 17, 297 (2012).

    Article  CAS  Google Scholar 

  15. M. Boutonnet, J. Kizling, P. Stenius, and G. Maire: The preparation of monodisperse colloidal metal particles from microemulsions. Colloids Surf. 5, 209 (1982).

    Article  CAS  Google Scholar 

  16. I. Lisiecki, F. Billoudet, and M.P. Pileni: Control of the shape and the size of copper metallic particles. J. Phys. Chem. 100, 4160 (1996).

    Article  CAS  Google Scholar 

  17. G.H. Du, Q. Chen, R.C. Che, Z.Y. Yuan, and L.-M. Peng: Preparation and structure analysis of titanium oxide nanotubes. Appl. Phys. Lett. 79, 3702 (2001).

    Article  CAS  Google Scholar 

  18. T. Beuvier, M. Richard-Plouet, and L. Brohan: Accurate methods for quantifying the relative ratio of anatase and TiO2(B) nanoparticles. J. Phys. Chem. C 113, 13703 (2009).

    Article  CAS  Google Scholar 

  19. A. Diéguez, A. Romano-Rodríguez, A. Vilà, and J.R. Morante: The complete Raman spectrum of nanometric SnO2 particles. J. Appl. Phys. 90, 1550 (2001).

    Article  Google Scholar 

  20. L. Li: Growth and photoluminescence properties of SnO2 nanobelts. Mater. Lett. 98, 146 (2013).

    Article  CAS  Google Scholar 

  21. C.S. Ferreira, P.L. Santos, J.A. Bonacin, R.R. Passos, and L.A. Pocrifka: Rice husk reuse in the preparation of SnO2/SiO2 nanocomposite. Mater. Res. 18, 639 (2015).

    Article  Google Scholar 

  22. M. Thommes, K. Kaneko, V. Neimark Alexander, P. Olivier James, F. Rodriguez-Reinoso, J. Rouquerol, and S.W. Sing Kenneth: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem., 1051 (2015).

    Google Scholar 

  23. Y. Zhou, C. Jo, J. Lee, C.W. Lee, G. Qao, and S. Yoon: Development of novel mesoporous C–TiO2–SnO2 nanocomposites and their application to anode materials in lithium ion secondary batteries. Microporous Mesoporous Mater. 151, 172 (2012).

    Article  CAS  Google Scholar 

  24. M. Zukalová, M. Kalbáč, L. Kavan, I. Exnar, and M. Graetzel: Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 17, 1248 (2005).

    Article  Google Scholar 

  25. Q. Wang, Z. Wen, and J. Li: Solvent-controlled synthesis and electrochemical lithium storage of one-dimensional TiO2 nanostructures. Inorg. Chem. 45, 6944 (2006).

    Article  CAS  Google Scholar 

  26. N. Li, C.R. Martin, and B. Scrosati: A high-rate, high-capacity, nanostructured tin oxide electrode. Electrochem. Solid-State Lett. 3, 316 (2000).

    Article  CAS  Google Scholar 

  27. F. Wang, G. Yao, M. Xu, M. Zhao, Z. Sun, and X. Song: Large-scale synthesis of macroporous SnO2 with/without carbon and their application as anode materials for lithium-ion batteries. J. Alloys Compd. 509, 5969 (2011).

    Article  CAS  Google Scholar 

  28. T.-F. Yi, J. Shu, Y.-R. Zhu, X.-D. Zhu, R.-S. Zhu, and A.-N. Zhou: Advanced electrochemical performance of Li4Ti4.95V0.05O12 as a reversible anode material down to 0V. J. Power Sources 195, 285 (2010).

    Article  CAS  Google Scholar 

  29. Z. Sun, J.H. Kim, Y. Zhao, F. Bijarbooneh, V. Malgras, Y. Lee, Y.-M. Kang, and S.X. Dou: Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. J. Am. Chem. Soc. 133, 19314 (2011).

    Article  CAS  Google Scholar 

  30. H. Jiang, X. Yang, C. Chen, Y. Zhu, and C. Li: Facile and controllable fabrication of three-dimensionally quasi-ordered macroporous TiO2 for high performance lithium-ion battery applications. New J. Chem. 37, 1578 (2013).

    Article  CAS  Google Scholar 

  31. I.A. Courtney and J.R. Dahn: Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2 BPO6 glass. J. Electrochem. Soc. 144, 2943 (1997).

    Article  CAS  Google Scholar 

  32. A.R. Armstrong, G. Armstrong, J. Canales, R. García, and P.G. Bruce: Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17, 862 (2005).

    Article  CAS  Google Scholar 

  33. M. Winter and J.O. Besenhard: Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 45, 31 (1999).

    Article  CAS  Google Scholar 

  34. V. Palomares, A. Goñi, I.G.d. Muro, I. de Meatza, M. Bengoechea, I. Cantero, and T. Rojo: Conductive additive content balance in Li-ion battery cathodes: Commercial carbon blacks vs. in situ carbon from LiFePO4/C composites. J. Power Sources 195, 7661 (2010).

    Article  CAS  Google Scholar 

  35. C.-Z. Lu and G.T.-K. Fey: Nanocrystalline and long cycling LiMn2O4 cathode material derived by a solution combustion method for lithium ion batteries. J. Phys. Chem. Solids 67, 756 (2006).

    Article  CAS  Google Scholar 

  36. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara: Formation of titanium oxide nanotube. Langmuir 14, 3160 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratefulness to the Project SEP-CONACYT CB-2012-01 #189865 and Project SEP-CONACYT CB-2011 #166649. This work was also supported by PAICYT-UANL program through project number IT468-15. The authors also acknowledge Dr. Alonso Concha Balderrama (CIMAV Monterrey), M.C. J. Alejandro Arizpe Zapata (CIMAV Monterrey), QFB Julio Rivera Haro (CIMAV Monterrey), and Departamento de Ecomateriales y Energía (FIC-UANL) for their help with XRD, Raman, ICP-OES, and BET measurements, respectively. Also, the support of Dra. Raquel Garza with the AAnalyzer® software (deconvolution of Raman peaks) is recognized. We thank Dr. Isaías Ramírez Juárez (FIC-UANL) and QFB Silvia López (FIC-UANL) for their support in the SEM characterization of the cycled electrodes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nayely Pineda-Aguilar or Lorena L. Garza-Tovar.

Supplementary materials

Supplementary materials

To view supplementary material for this article, please visit https://doi.org/10.1557/jmr.2020.213.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pineda-Aguilar, N., Sánchez-Domínguez, M., Sánchez-Cervantes, E.M. et al. Preparation of TiO2-(B)/SnO2 nanostructured composites and its performance as anodes for lithium-ion batteries. Journal of Materials Research 35, 2491–2505 (2020). https://doi.org/10.1557/jmr.2020.213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.213

Navigation