Skip to main content
Log in

Facile preparation of TiO2 nanoparticles decorated by the graphene for enhancement of dye-sensitized solar cell performance

  • 2D and Nanomaterials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, graphene and graphene oxide were synthesized by the modified Hummers method. In order to use graphene in dye-sensitized solar cell (DSSC), TiO2–graphene was prepared by a simple chemical method and used in the DSSC photoanode at different concentrations of graphene to investigate DSSC performance. Utilizing the FE-SEM images, it was observed that accumulation of TiO2 nanoparticles disappeared and a different distribution of nanoparticles was formed on the graphene sheet. Moreover, the UV-vis spectra showed that TiO2–graphene nanocomposites can absorb a wide range of light in comparison with pure TiO2. Structural characterization of TiO2–graphene nanocomposites is confirmed by the FT-IR and Raman analysis. The results have shown that in the presence of graphene, the DSSC performance significantly improved by reducing the recombination. In addition, it has been shown that excess graphene concentration is not proper for DSSC performance. The best result for TiO2–graphene nanocomposite was obtained when the concentration of 1.5% graphene was applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. B. O’regan and M. Grätzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. nature 353, 737 (1991).

    Article  Google Scholar 

  2. J. Gong, K. Sumathy, Q. Qiao, and Z. Zhou: Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable Sustainable Energy Rev. 68, 234 (2017).

    Article  CAS  Google Scholar 

  3. N.T.R.N. Kumara, A. Lim, C.M. Lim, M.I. Petra, and P. Ekanayake: Recent progress and utilization of natural pigments in dye sensitized solar cells: A review. Renewable Sustainable Energy Rev. 78, 301 (2017).

    Article  CAS  Google Scholar 

  4. M.S. Ahmad, A.K. Pandey, and N.A. Rahim: Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renewable Sustainable Energy Rev. 77, 89 (2017).

    Article  CAS  Google Scholar 

  5. C. Yu, J. Zhang, H. Yang, L. Zhang, and Y. Gao: Enhanced photovoltaic conversion efficiency of a dye-sensitized solar cell based on TiO2 nanoparticle/nanorod array composites. J. Mater. Res., Volume: 34 1 (2019).

    Google Scholar 

  6. J. Archana, S. Harish, S. Kavirajan, M. Navaneethan, S. Ponnusamy, M. Shimomura, C. Muthamizhchelvan, H. Ikeda, and Y. Hayakawa: Ultra-fast photocatalytic and dye-sensitized solar cell performances of mesoporous TiO2 nanospheres. Appl. Surf. Sci. 449, 729 (2018).

    Article  CAS  Google Scholar 

  7. R. Shen, C. Jiang, Q. Xiang, J. Xie, and X. Li: Surface and interface engineering of hierarchical photocatalysts. Appl. Surf. Sci. 471, 43 (2019).

    Article  CAS  Google Scholar 

  8. M. Liu, Y. Hou, and X. Qu: Enhanced power conversion efficiency of dye-sensitized solar cells with samarium doped TiO2 photoanodes. J. Mater. Res. 32, 3469 (2017).

    Article  CAS  Google Scholar 

  9. L.T. Yan, F.L. Wu, L. Peng, L.J. Zhang, P.J. Li, S.Y. Dou, and T.X. Li: Photoanode of dye-sensitized solar cells based on a ZnO/TiO2 composite film. Int. J. Photoenergy 2012, 1 (2012).

    Article  CAS  Google Scholar 

  10. S. Das, P. Sudhagar, Y.S. Kang, and W. Choi: Graphene synthesis and application for solar cells. J. Mater. Res. 29, 299 (2014).

    Article  CAS  Google Scholar 

  11. X. Li, J. Yu, S. Wageh, A.A. Al-Ghamdi, and J. Xie: Graphene in photocatalysis: A review. Small 12, 6640 (2016).

    Article  CAS  Google Scholar 

  12. N. Yang, J. Zhai, D. Wang, Y. Chen, and L. Jiang: Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4, 887 (2010).

    Article  CAS  Google Scholar 

  13. L. Yin, M. Zhao, H. Hu, J. Ye, and D. Wang: Synthesis of graphene/tourmaline/TiO2 composites with enhanced activity for photocatalytic degradation of 2-propanol. Chin. J. Catal. 38, 1307 (2017).

    Article  CAS  Google Scholar 

  14. N.N.T. Ton, A.T.N. Dao, K. Kato, T. Ikenaga, D.X. Trinh, and T. Taniike: One-pot synthesis of TiO2/graphene nanocomposites for excellent visible light photocatalysis based on chemical exfoliation method. Carbon 133, 109 (2018).

    Article  CAS  Google Scholar 

  15. A. Kim, J. Kim, M.Y. Kim, S.W. Ha, N.T.T. Tien, and M. Kang: Photovoltaic efficiencies on dye-sensitized solar cells assembled with graphene-linked TiO2 anode films. Bull. Korean Chem. Soc. 33, 3355 (2012).

    Article  CAS  Google Scholar 

  16. L. Shao, S. Quan, Y. Liu, Z. Guo, and Z. Wang: A novel “gel–sol” strategy to synthesize TiO2 nanorod combining reduced graphene oxide composites. Mater. Lett. 107, 307 (2013).

    Article  CAS  Google Scholar 

  17. M. Sohail, H. Xue, Q. Jiao, H. Li, K. Khan, S. Wang, and Y. Zhao: Synthesis of well-dispersed TiO2@reduced graphene oxide (rGO) nanocomposites and their photocatalytic properties. Mater. Res. Bull. 90, 125 (2017).

    Article  CAS  Google Scholar 

  18. Y. Zhang, X. Hou, T. Sun, and X. Zhao: Calcination of reduced graphene oxide decorated TiO2 composites for recovery and reuse in photocatalytic applications. Ceram. Int. 43, 1150 (2017).

    Article  CAS  Google Scholar 

  19. Y. Kusumawati and M.A. Martoprawiro: Supporting information effects of graphene in graphene/TiO2 composite films applied to solar cell photoelectrode. J. Phys. Chem. C 118, 9974 (2014).

    Article  CAS  Google Scholar 

  20. L. Liu, B. Zeng, Q. Meng, Z. Zhang, J. Li, X. Zhang, P. Yang, and H. Wang: Titanium dioxide/graphene anode for enhanced charge-transfer in dye-sensitized solar cell. Synth. Met. 222, 219 (2016).

    Article  CAS  Google Scholar 

  21. Y. Zhang, Z. Zhou, T. Chen, H. Wang, and W. Lu: Graphene TiO2 nanocomposites with high photocatalytic activity for the degradation of sodium pentachlorophenol. J. Environ. Sci. 26, 2114 (2014).

    Article  Google Scholar 

  22. Q. Zhang, N. Bao, X. Wang, X. Hu, X. Miao, M. Chaker, and D. Ma: Advanced fabrication of chemically bonded graphene/TiO2 continuous fibers with enhanced broadband photocatalytic properties and involved mechanisms exploration. Sci. Rep. 6, 1 (2016).

    Article  CAS  Google Scholar 

  23. L. Tan, W. Ong, S. Chai, and A.R. Mohamed: Reduced graphene oxide–TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Res. Lett. 8, 465 (2013).

    Article  CAS  Google Scholar 

  24. R. Ahmadkhaniha, F. Izadpanah, and N. Rastkari: Reduced graphene oxide–TiO2 nanocomposite facilitated visible light photodegradation of gaseous toluene. J. Environ. Prot. 8, 591 (2017).

    Article  CAS  Google Scholar 

  25. G. Hu, J. Yang, D. Zhao, Y. Chen, and Y. Cao: Research on photocatalytic properties of TiO2–graphene composites with different morphologies. J. Mater. Eng. Perform. 26, 3263 (2017).

    Article  CAS  Google Scholar 

  26. R. Rahimi, S. Zargari, and Z. Sadat Shojaei: Photoelectrochemical investigation of TiO2–graphene nanocomposites. In Proceedings of the 18th International Electronic Conference on Synthetic Organic Chemistry, J.A. Seijas, M. Pilar Vázquez Tato, and S-K. Lin, eds. (MDPI, Basel, Switzerland, 2014); pp. 1–30.

    Google Scholar 

  27. Y.C. Wang and C.P. Cho: Application of TiO2–graphene nanocomposites to photoanode of dye-sensitized solar cell. J. Photochem. Photobiol., A 332, 1 (2017).

    Article  CAS  Google Scholar 

  28. S. Gayathri, M. Kottaisamy, and V. Ramakrishnan: Facile microwave-assisted synthesis of titanium dioxide decorated graphene nanocomposite for photodegradation of organic dyes. AIP Adv. 5, 127219 (2015).

    Article  CAS  Google Scholar 

  29. D. Chen, L. Zou, S. Li, and F. Zheng: Nanospherical like reduced graphene oxide decorated TiO2 nanoparticles: An advanced catalyst for the hydrogen evolution reaction. Sci. Rep. 6, 1 (2016).

    Article  CAS  Google Scholar 

  30. K. Alamelu, V. Raja, L. Shiamala, and B.M. Jaffar Ali: Biphasic TiO2 nanoparticles decorated graphene nanosheets for visible light driven photocatalytic degradation of organic dyes. Appl. Surf. Sci. 430, 145 (2018).

    Article  CAS  Google Scholar 

  31. Y. Haldorai, A. Rengaraj, C.H. Kwak, Y.S. Huh, and Y.K. Han: Fabrication of nano TiO2@graphene composite: Reusable photocatalyst for hydrogen production, degradation of organic and inorganic pollutants. Synth. Met. 198, 10 (2014).

    Article  CAS  Google Scholar 

  32. Y. Liu: Hydrothermal synthesis of TiO2–RGO composites and their improved photocatalytic activity in visible light. RSC Adv. 4, 36040 (2014).

    Article  CAS  Google Scholar 

  33. C.B. Song, Y.H. Qiang, Y.L. Zhao, X.Q. Gu, L.Z.J. Song, and X. Liu: Dye-sensitized solar cells based on graphene–TiO2 nanoparticles/TiO2 nanotubes composite films. Int. J. Electrochem. Sci. 9, 8090 (2014).

    Google Scholar 

  34. L.C. Chen, C.H. Hsu, P.S. Chan, X. Zhang, and C.J. Huang: Improving the performance of dye-sensitized solar cells with TiO2/graphene/TiO2 sandwich structure. Nanoscale Res. Lett. 9, 380 (2014).

    Article  CAS  Google Scholar 

  35. X. Li, R. Shen, S. Ma, X. Chen, and J. Xie: Graphene-based heterojunction photocatalysts. Appl. Surf. Sci. 430, 53 (2018).

    Article  CAS  Google Scholar 

  36. A.M. Ramli, M.Z. Razali, and N.A. Ludin: Performance enhancement of dye sensitized solar cell using graphene oxide doped titanium dioxide photoelectrode. Malays. J. Anal. Sci. 21, 928 (2017).

    Google Scholar 

  37. Y. Kim, S. Yang, J.W. Lee, J.O. Choi, S.H. Ahn, and C.S. Lee: Photovoltaic characteristics of a dye-sensitized solar cell (DSSC) fabricated by a nano-particle deposition system (NPDS). Mater. Trans. 54, 2064 (2013).

    Article  CAS  Google Scholar 

  38. U. Mehmood, S. Ahmed, I.A. Hussein, and K. Harrabi: Co-sensitization of TiO2-MWCNTs hybrid anode for efficient dye-sensitized solar cells. Electrochim. Acta. 173, 607 (2015).

    Article  CAS  Google Scholar 

  39. A. Eshaghi and A.A. Aghaei: Effect of TiO2–graphene nanocomposite photoanode on dye-sensitized solar cell performance. Bull. Mater. Sci. 38, 1177 (2015).

    Article  CAS  Google Scholar 

  40. S. Mozaffari, M.R. Nateghi, and M.B. Zarandi: An overview of the challenges in the commercialization of dye sensitized solar cells. Renewable Sustainable Energy Rev. 71, 675 (2017).

    Article  CAS  Google Scholar 

  41. R. Ghayoor, A. Keshavarz, M.N. Soltani Rad, and A. Mashreghi: Enhancement of photovoltaic performance of dye-sensitized solar cells based on TiO2–graphene quantum dots photoanode. Mater. Res. Express 6, 025505 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Keshavarz.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghayoor, R., Keshavarz, A. & Soltani Rad, M.N. Facile preparation of TiO2 nanoparticles decorated by the graphene for enhancement of dye-sensitized solar cell performance. Journal of Materials Research 34, 2014–2023 (2019). https://doi.org/10.1557/jmr.2019.142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.142

Navigation