Skip to main content
Log in

Biomimetic gelatine coating for less-corrosive and surface bioactive Mg-9Al-1Zn alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Magnesium (Mg)-based alloys have been emerging as innovative orthopedic materials due to their light weight and excellent biocompatibility. However, their too rapid degradation and subsequent loss of mechanical integrity before the bone tissue regeneration limits their applications. The presented study introduces in situ cross-linked gelatine (GEL) as a biomimetic coating onto Mg-9Al-1Zn-based alloys by carbodiimide chemistry and dip-coating. The bulk and surface morphology, chemistry, and bioactivity, as well as the corrosion behavior of uncoated and coated alloys were investigated in simulated body fluid (SBF) solution via in vitro testing and using various analytical techniques. The results revealed that the GEL coating mitigates the corrosion (from ∼2.08 to ∼1.19 mm/year) by forming a protective interface layer between the alloy surface and SBF solution, generating a bio-safer alkaline pH environment (pH ≈ 8.3), which minimizes the material resorption. GEL presence also stimulates the mineralization with calcium phosphate compounds, being patterned by its orientation and random coil conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M. Niinomi: Recent metallic materials for biomedical applications. Metall. Mater. Trans. A 33, 477–486 (2002).

    Article  Google Scholar 

  2. F. Witte: Reprint of: The history of biodegradable magnesium implants: A review. Acta Biomater. 23, S28–S40 (2015).

    Article  Google Scholar 

  3. F. Witte: The history of biodegradable magnesium implants: A review. Acta Biomater. 6, 1680–1692 (2010).

    Article  CAS  Google Scholar 

  4. Y. Chen, Z. Xu, C. Smith, and J. Sankar: Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 10, 4561–4573 (2014).

    Article  CAS  Google Scholar 

  5. A. Pietak, P. Mahoney, G.J. Dias, and M.P. Staiger: Bone-like matrix formation on magnesium and magnesium alloys. J. Mater. Sci. Mater. Med. 19, 407–415 (2008).

    Article  CAS  Google Scholar 

  6. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindbenberg, C.J. Wirth, and H. Windhagen: In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26, 3557–3563 (2005).

    Article  CAS  Google Scholar 

  7. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias: Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27, 1728–1734 (2006).

    Article  CAS  Google Scholar 

  8. X. Liu, J. Sun, F. Zhou, Y. Yang, R. Chang, K. Qiu, Z. Pu, L. Li, and Y. Zheng: Micro-alloying with Mn in Zn–Mg alloy for future biodegradable metals application. Mater. Des 94, 95–104 (2016).

    Article  CAS  Google Scholar 

  9. Y. Estrin, S.S. Nene, B.P. Kashyap, N. Prabhu, and T. Al-Samman: New hot rolled Mg–4Li–1Ca alloy: A potential candidate for automotive and biodegradable implant applications. Mater. Lett. 173, 252–256 (2016).

    Article  CAS  Google Scholar 

  10. T.A. Grünewald, H. Rennhofer, B. Hesse, M. Burghammer, S.E. Stanzl-Tschegg, M. Cotte, J.F. Löffler, A.M. Weinberg, and H.C. Lichtenegger: Magnesium from bioresorbable implants: Distribution and impact on the nano- and mineral structure of bone. Biomaterials 76, 250–260 (2016).

    Article  CAS  Google Scholar 

  11. K.F. Farraro, K.E. Kim, S.L-Y. Woo, J.R. Flowers, and M.B. McCullough: Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. J. Biomech. 47, 1985 (2014).

    Article  Google Scholar 

  12. D. Zhao, S. Huang, F. Lu, B. Wang, L. Yang, L. Qin, K. Yang, Y. Li, W. Li, W. Wang, S. Tian, X. Zhang, W. Gao, Z. Wang, Y. Zhang, X. Xie, J. Wang, and J. Li: Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head. Biomaterials 81, 84–92 (2016).

    Article  CAS  Google Scholar 

  13. M.S. Uddin, C. Hall, and P. Murphy: Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants. Sci. Technol. Adv. Mater. 16, 53501 (2015).

    Article  CAS  Google Scholar 

  14. T.S.N. Sankara Narayanan, I.S. Park, and M.H. Lee: Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges. Prog. Mater. Sci. 60, 1–71 (2014).

    Article  CAS  Google Scholar 

  15. Y.L. Song, Y.H. Liu, S.R. Yu, X.Y. Zhu, and Q. Wang: Plasma electrolytic oxidation coating on AZ91 magnesium alloy modified by neodymium and its corrosion resistance. Appl. Surf. Sci. 254, 3014–3020 (2008).

    Article  CAS  Google Scholar 

  16. X. Ren, Y. Feng, J. Guo, H. Wang, Q. Li, J. Yang, X. Hao, J. Lv, N. Ma, and W. Li: Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem. Soc. Rev. 44, 5680–5742 (2015).

    Article  CAS  Google Scholar 

  17. C.L. Chu, X. Han, F. Xue, J. Bai, and P.K. Chu: Effects of sealing treatment on corrosion resistance and degradation behavior of micro-arc oxidized magnesium alloy wires. Appl. Surf. Sci. 271, 271–275 (2013).

    Article  CAS  Google Scholar 

  18. Z. Jia, P. Xiong, Y. Shi, W. Zhou, Y. Cheng, Y. Zheng, T. Xi, and S. Wei: Inhibitor encapsulated, self-healable and cytocompatible chitosan multilayer coating on biodegradable Mg alloy: A pH-responsive design. J. Mater. Chem. B 4, 2498–2511 (2016).

    Article  CAS  Google Scholar 

  19. H. Reddy Tiyyagura, R. Rudolf, S. Gorgieva, R. Fuchs-Godec, V. Rao Boyapati, K. Mohan Mantravadi, and V. Kokol: The chitosan coating and processing effect on the physiological corrosion behaviour of porous magnesium monoliths. Prog. Org. Coat. 99, 147–156 (2016).

    Article  CAS  Google Scholar 

  20. H.M. Wong, K.W. Yeung, K.O. Lam, V. Tam, P.K. Chu, K.D. Luk, and K.M. Cheung: A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 31, 2084–2096 (2010).

    Article  CAS  Google Scholar 

  21. X. Chen, S. Zhao, M. Chen, W. Zhang, J. Mao, Y. Zhao, M.F. Maitz, N. Huang, and G. Wan: Sandwiched polydopamine (PDA) layer for titanium dioxide (TiO2) coating on magnesium to enhance corrosion protection. Corros. Sci. 96, 67–73 (2015).

    Article  CAS  Google Scholar 

  22. F. Gong, J. Shen, R. Gao, X. Xie, and X. Luo: Enhanced corrosion resistance of magnesium alloy by a silane-based solution treatment after an in-situ formation of the Mg(OH)2 layer. Appl. Surf. Sci. 365, 268–274 (2016).

    Article  CAS  Google Scholar 

  23. Z. Zhen, T.F. Xi, and Y.F. Zheng: Surface Modification of Magnesium and its Alloys for Biomedical Applications. Volume II: Modification and Coating Techniques (Woodhead Publishing Series in Biomaterials, 2015); pp. 301–333. doi: https://doi.org/10.1016/B978-1-78242-078-1.00011-6.

  24. S. Kunjukunju, A. Roy, M. Ramanathan, B. Lee, J.E. Candiello, and P.N. Kumta: A layer-by-layer approach to natural polymer-derived bioactive coatings on magnesium alloys. Acta Biomater. 9, 8690–8703 (2013).

    Article  CAS  Google Scholar 

  25. Z. Wei, P. Tian, X. Liu, and B. Zhou: In vitro degradation, hemolysis, and cytocompatibility of PEO/PLLA composite coating on biodegradable AZ31 alloy. J. Biomed. Mater. Res. B Appl. Biomater. 103, 342–354 (2015).

    Article  CAS  Google Scholar 

  26. N.J. Ostrowski, B. Lee, A. Roy, M. Ramanathan, and P.N. Kumta: Biodegradable poly(lactide-co-glycolide) coatings on magnesium alloys for orthopedic applications. J. Mater. Sci. Mater. Med. 24, 85–96 (2013).

    Article  CAS  Google Scholar 

  27. O. Jeon, S.J. Song, S-W. Kang, A.J. Putnam, and B-S. Kim: Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(l-lactic-co-glycolic acid) scaffold. Biomaterials 28, 2763–2771 (2007).

    Article  CAS  Google Scholar 

  28. S. Gorgieva and V. Kokol: Processing of gelatin-based cryogels with improved thermomechanical resistance, pore size gradient, and high potential for sustainable protein drug release. J. Biomed. Mater. Res., Part A 103, 1119–1130 (2015).

    Article  CAS  Google Scholar 

  29. T. Kokubo and H. Takadama: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915 (2006).

    Article  CAS  Google Scholar 

  30. S. Gorgieva, J. Strancar, and V. Kokol: Evaluation of surface/interface-related physicochemical and microstructural properties of gelatin 3D scaffolds, and their influence on fibroblast growth and morphology. J. Biomed. Mater. Res., Part A 102, 3986–3997 (2014).

    Article  CAS  Google Scholar 

  31. Z. Yang, Y. Jiang, L. Yu, B. Wen, F. Li, S. Suna, and T. Houa: Preparation and characterization of magnesium doped hydroxyapatite–gelatin nanocomposite. J. Mater. Chem. 15, 1807 (2005).

    Article  CAS  Google Scholar 

  32. A. Karthika, L. Kavitha, M. Surendiran, S. Kannan, and D. Gopi: Fabrication of divalent ions substituted hydroxyapatite/gelatin nanocomposite coating on electron beam treated titanium: Mechanical, anticorrosive, antibacterial and bioactive evaluations. RSC Adv. 5, 47341–47352 (2015).

    Article  CAS  Google Scholar 

  33. V. Chiono, E. Pulieri, G. Vozzi, G. Ciardelli, A. Ahluwalia, and P. Giusti: Genipin-crosslinked chitosan/gelatin blends for biomedical applications. J. Mater. Sci. Mater. Med. 19, 889–898 (2008).

    Article  CAS  Google Scholar 

  34. M. Cheng, J. Deng, F. Yang, Y. Gong, N. Zhao, and X. Zhang: Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials 24, 2871–2880 (2003).

    Article  CAS  Google Scholar 

  35. A.A. Haroun and V. Migonney: Synthesis and in vitro evaluation of gelatin/hydroxyapatite graft copolymers to form bionanocomposites. Int. J. Biol. Macromol. 46, 310–316 (2010).

    Article  CAS  Google Scholar 

  36. W.Y. Chan, K.S. Chian, and M.J. Tan: In vitro metal ion release and biocompatibility of amorphous Mg67Zn28Ca5 alloy with/without gelatin coating. Mater. Sci. Eng., C 33, 5019–5027 (2013).

    Article  CAS  Google Scholar 

  37. X. Xu, P. Lu, M. Guo, and M. Fang: Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release. Appl. Surf. Sci. 256, 2367–2371 (2010).

    Article  CAS  Google Scholar 

  38. B.V. Vladimirov, B.L. Krit, V.B. Lyudin, N.V. Morozova, A.D. Rossiiskaya, I.V. Suminov, and A.V. Epel’feld: Microarc oxidation of magnesium alloys: A review. Surf. Eng. Appl. Electrochem. 50, 195–232 (2014).

    Article  Google Scholar 

  39. T.S.N. Sankara Narayanan, S. Park, and M.H. Lee: Strategies to improve the corrosion resistance of microarc oxidation coatings on magnesium and its alloys: Implications for biomedical applications. In Surface Modification of Magnesium and its Alloys for Biomedical Applications (2015); pp. 235–267. doi: https://doi.org/10.1016/B978-1-78242-078-1.00009-8.

  40. S. Gorgieva, J. Štrancar, and V. Kokol: Evaluation of surface/interface-related physicochemical and microstructural properties of gelatin 3D scaffolds, and their influence on fibroblast growth and morphology. J. Biomed. Mater. Res., Part A 102, 3986–3997 (2014).

    Article  CAS  Google Scholar 

  41. S. Gorgieva, and V. Kokol: Collagen- vs. gelatine-based biomaterials and their biocompatibility: Review and perspectives. In Biomaterials Applications for Nanomedicine, R. Pignatello ed., (InTech, 2011). DOI: https://doi.org/10.5772/24118.

  42. J. Muyonga, C.G. Cole, and K. Duodu: Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chem. 86, 325–332 (2004).

    Article  CAS  Google Scholar 

  43. L. Berzina-Cimdina and N. Borodajenko: Research of calcium phosphates using fourier transform infrared spectroscopy. In Infrared Spectroscopy — Materials Science, Engineering and Technology, T. Theophile ed., (InTech, 2012).

  44. R. Rettig and S. Virtanen: Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids. J. Biomed. Mater. Res., Part A 88, 359–369 (2009).

    Article  CAS  Google Scholar 

  45. H.M. Wong, Y. Zhao, V. Tam, S. Wu, P.K. Chu, Y. Zheng, M.K. To, F.K. Leung, K.D. Luk, K.M. Cheung, and K.W. Yeung: In vivo stimulation of bone formation by aluminum and oxygen plasma surface-modified magnesium implants. Biomaterials 34, 9863–9876 (2013).

    Article  CAS  Google Scholar 

  46. D. Gopi, P.R. Bhalaji, S. Ramya, and L. Kavitha: Evaluation of biodegradability of surface treated AZ91 magnesium alloy in SBF solution. J. Ind. Eng. Chem. 23, 218–227 (2015).

    Article  CAS  Google Scholar 

  47. T.M. Mukhametkaliyev, M.A. Surmeneva, A. Vladescu, C.M. Cotrut, M. Braic, M. Dinu, M.D. Vranceanu, I. Pana, M. Mueller, and R.A.A. Surmenev: Biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance. Mater. Sci. Eng., C 75, 95–103 (2017).

    Article  CAS  Google Scholar 

  48. T.R. Arnett: Extracellular pH regulates bone cell function. J. Nutr. 138, 415S–418S (2008).

    Article  CAS  Google Scholar 

  49. B. Sarker, D.G. Papageorgiou, R. Silva, T. Zehnder, F. Gul-E-Noor, M. Bertmer, J. Kaschta, K. Chrissafis, R. Detsch, and A.R. Boccaccini: Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J. Mater. Chem. B 2, 1470 (2014).

    Article  CAS  Google Scholar 

  50. G. Baril, C. Blanc, and N. Pébère: AC Impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys characterization with respect to their microstructures. J. Electrochem. Soc. 148, B489 (2001).

    Article  CAS  Google Scholar 

  51. A.D. King, N. Birbilis, and J.R. Scully: Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study. Electrochim. Acta 121, 394–406 (2014).

    Article  CAS  Google Scholar 

  52. C.H. Hsu and F. Mansfeld: Concernng the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion 57, 747–748 (2001).

    Article  CAS  Google Scholar 

  53. M. Chen, Y. Chen, W. Zhang, S. Zhao, J. Wang, J. Mao, W. Li, Y. Zhao, N. Huanga, and G. Wan: Controlling the corrosion rate and behavior of biodegradable magnesium by a surface-immobilized ultrathin 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) film. RSC Adv. 6, 15247–15259 (2016).

    Article  CAS  Google Scholar 

  54. D-J. Lin, F-Y. Hung, S. Jakfar, and M-L. Yeh: Tailored coating chemistry and interfacial properties for construction of bioactive ceramic coatings on magnesium biomaterial. Mater. Des. 89, 235–244 (2016).

    Article  CAS  Google Scholar 

  55. L.C. Córdoba, M.F. Montemor, and T. Coradin: Silane/TiO2 coating to control the corrosion rate of magnesium alloys in simulated body fluid. Corros. Sci. 104, 152–161 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported financially by the Erasmus Mundus Grant no. EMA2-2013-2540/001-001-EM-EUPHRATES.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mantravadi Krishna Mohan or Vanja Kokol.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiyyagura, H.R., Fuchs-Godec, R., Gorgieva, S. et al. Biomimetic gelatine coating for less-corrosive and surface bioactive Mg-9Al-1Zn alloys. Journal of Materials Research 33, 1449–1462 (2018). https://doi.org/10.1557/jmr.2018.65

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.65

Navigation