Skip to main content
Log in

Toward the design of interstitial nonmetals co-doping for Mg-based hydrides as hydrogen storage material

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The strong interactions between Mg and Ni/NiH4 are attributed to harsh operating conditions and difficulties for H2 release, restricting the practical applications of the Mg-based hydrides. In this study, a new method of interstitial nonmetals co-doping was proposed to reduce the strong interactions. The calculation results showed that the method of interstitial nonmetals co-doping causes a more significant reduction in the thermal stability of Mg-based hydrides, as compared with the methods of either single transition metal or nonmetal doping. To determine the influence mechanism, a theoretical study was conducted based on the first-principles calculations. The computations demonstrated that the criss-cross action between B–Ni and N–Mg bonds weakens the bonding effects between Mg and Ni/NiH4. Besides, the mutual interactions between nonmetals and H atoms could weaken Ni–H bonding effects and stimulate the breaking of stable NiH4 clusters, thereby facilitating the release of H2 from the hydride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. T. He, P. Pachfule, H. Wu, Q. Xu, and P. Chen: Hydrogen carriers. Nat. Rev. Mater. 1, 16059 (2016).

    CAS  Google Scholar 

  2. Y. Bai, Z.W. Pei, F. Wu, J.H. Yang, and C. Wu: Enhanced hydrogen generation by solid-state thermal decomposition of NaNH2–NaBH4 composite promoted with Mg–Co–B catalyst. J. Mater. Res. 32, 1203 (2017).

    CAS  Google Scholar 

  3. B. He, Y. Kuang, and X. Chen: Enhanced electrocatalytic hydrogen evolution activity of nickel foam by low-temperature-oxidation. J. Mater. Res. 33, 213 (2018).

    CAS  Google Scholar 

  4. J.A. Alonso, I. Cabria, and M.J. López: Simulation of hydrogen storage in porous carbons. J. Mater. Res. 28, 589 (2013).

    CAS  Google Scholar 

  5. P.C. Pandey, S. Shukla, and Y. Pandey: Mesoporous silica beads encapsulated with functionalized palladium nanocrystallites: Novel catalyst for selective hydrogen evolution. J. Mater. Res. 32, 3574 (2017).

    CAS  Google Scholar 

  6. W. Gierlotka and C. Lee: Thermodynamic description of hydrogen storage materials Cr–Ti–Zr and Fe–Ti–Zr. J. Mater. Res. 32, 1386 (2017).

    CAS  Google Scholar 

  7. Y. Jia, C. Sun, S. Shen, Z. Jin, S.S. Mao, and X. Yao: Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage. Renewable Sustainable Energy Rev. 44, 289 (2015).

    CAS  Google Scholar 

  8. X.Q. Tran, S.D. McDonald, Q. Gu, S. Matsumura, and K. Nogita: Effect of trace Na additions on the hydrogen absorption kinetics of Mg2Ni. J. Mater. Res. 31, 1316 (2016).

    CAS  Google Scholar 

  9. Y. Chen, H. Huang, J. Fu, Q. Guo, F. Pan, S. Deng, J. Li, and G. Zhao: The synthesis and hydrogen storage properties of Mg2Ni substituted with Cu, Co. J. Mater. Res. 24, 1311 (2009).

    CAS  Google Scholar 

  10. Y. Tan, Y. Zhu, J. Yuan, and L. Li: Improved hydrogen storage properties of Ti-doped Mg95Ni5 powder produced by hydriding combustion synthesis. J. Mater. Res. 30, 967 (2015).

    CAS  Google Scholar 

  11. J.J. Reilly and R.H. Wiswall: Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg. Chem. 7, 2254 (1968).

    CAS  Google Scholar 

  12. Z. Wu, F. Yang, Z. Zhang, and Z. Bao: Magnesium based metal hydride reactor incorporating helical coil heat exchanger: Simulation study and optimal design. Appl. Energy 130, 712 (2014).

    CAS  Google Scholar 

  13. A. Roy, A. Janotti, and C.G. Van: Effect of transition-metal additives on hydrogen desorption kinetics of MgH2. Appl. Phys. Lett. 102, 033902 (2013).

    Google Scholar 

  14. C.X. Shang, M. Bououdina, Y. Song, and Z.X. Guo: Mechanical alloying and electronic simulation of MgH2 + M systems (M = Al, Ti, Fe, Ni, Cu, and Nb) for hydrogen storage. Int. J. Hydrogen Energy 29, 73 (2004).

    CAS  Google Scholar 

  15. Y. Zeng, K. Fan, X. Li, B. Xu, X. Gao, and L. Meng: First-principles studies of the structures and properties of Al- and Ag-substituted Mg2Ni alloys and their hydrides. Int. J. Hydrogen Energy 35, 10349 (2010).

    CAS  Google Scholar 

  16. J. Zhang, Y.N. Huang, C. Mao, P. Peng, Y.M. Shao, and D.W. Zhou: Ab initio calculations on energetics and electronic structures of cubic Mg3MNi2 (M = Al, Ti, Mn) hydrogen storage alloys. Int. J. Hydrogen Energy 36, 14477 (2011).

    CAS  Google Scholar 

  17. J. Jiang, S. Zhang, S. Huang, P. Wang, and H. Tian: Density functional theory studies of Yb-, Ca- and Sr-substituted Mg2NiH4 hydrides. Comput. Mater. Sci. 74, 55 (2013).

    CAS  Google Scholar 

  18. X. Hou, H. Kou, T. Zhang, R. Hu, J. Li, and X. Xue: First-principles studies on the structures and properties of Ti- and Zn-substituted Mg2Ni hydrogen storage alloys and their hydrides. Mater. Sci. Forum 743–744, 44 (2013).

    Google Scholar 

  19. M. Zhang, Z. Liang, S. Yan, C. Gong, and G. Sun: First-principles investigation on energies and electronic structures of Nb alloying Mg2Ni and its hydrides. Rare Met. Mater. Eng. 44, 386 (2015).

    CAS  Google Scholar 

  20. Y. Li, G. Sun, and Y. Mi: The structures and properties of Y-substituted Mg2Ni alloys and their hydrides: A first-principles study. Am. J. Anal. Chem. 7, 67 (2016).

    CAS  Google Scholar 

  21. H. Ding, S. Zhang, Y. Zhang, S. Huang, P. Wang, and H. Tian: Effects of nonmetal element (B, C, and Si) additives in Mg2Ni hydrogen storage alloy: A first-principles study. Int. J. Hydrogen Energy 37, 6700 (2012).

    CAS  Google Scholar 

  22. Z. Wu, L. Zhu, F. Yang, Z. Jiang, and Z. Zhang: Influences of interstitial nitrogen with high electronegativity on structure and hydrogen storage properties of Mg-based metal hydride: A theoretical study. Int. J. Hydrogen Energy 41, 18550 (2016).

    CAS  Google Scholar 

  23. Z. Wu, L. Zhu, F. Yang, Z. Zhang, and Z. Jiang: First-principles insights into influencing mechanisms of metalloid B on Mg-based hydrides. J. Alloys Compd. 693, 979 (2017).

    CAS  Google Scholar 

  24. M. Bhihi, M.E. Khatabi, M. Lakhal, S. Naji, H. Labrim, A. Benyoussef, A.E. Kenz, and M. Loulidi: First principle study of hydrogen storage in doubly substituted Mg based hydrides. Int. J. Hydrogen Energy 40, 8356 (2015).

    CAS  Google Scholar 

  25. M. Abdellaoui, M. Lakhal, M. Bhihi, M.E. Khatabi, A. Benyoussef, A.E. Kenz, and M. Loulidi: First principle study of hydrogen storage in doubly substituted Mg based hydrides Mg5MH12 (M = B, Li) and Mg4BLiH12. Int. J. Hydrogen Energy 41, 20908 (2016).

    CAS  Google Scholar 

  26. V.R. Mannepalli, R. Raghunathan, R. Ramadurai, A. David, and W. Prellier: Local structural distortion and interrelated phonon mode studies in yttrium chromite. J. Mater. Res. 32, 1541 (2017).

    CAS  Google Scholar 

  27. B. Kocak and Y.O. Ciftci: Determination of the basic physical properties of semiconductor chalcopyrite type MgSnT2 (T = P, As, Sb) from first-principles calculations. J. Mater. Res. 31, 1518 (2016).

    CAS  Google Scholar 

  28. M.K. Alam, S. Saito, and H. Takaba: Modeling of equilibrium conformation of Pt2Ru3 nanoparticles using the density functional theory and Monte Carlo simulations. J. Mater. Res. 32, 1573 (2017).

    CAS  Google Scholar 

  29. X. Fan, S. Wang, X. Yang, and G. Ni: Bonding characteristic and electronic property of TiCxN1−x(001)/TiC(001) interface: A first-principles study. J. Mater. Res. 33, 1650 (2018).

    CAS  Google Scholar 

  30. A. Allred: Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 17, 215 (1961).

    CAS  Google Scholar 

  31. M.V. Simičić, M. Zdujić, R. Dimitrijević, L. Nikolić-Bujanović, and N.H. Popović: Hydrogen absorption and electrochemical properties of Mg2Ni-type alloys synthesized by mechanical alloying. J. Power Sources 158, 730 (2006).

    Google Scholar 

  32. P. Zolliker, K. Yvon, J.D. Jorgensen, and F.J. Rotella: Structural studies of the hydrogen storage material Mg2NiH4. 2. Monoclinic low-temperature structure. Inorg. Chem. 25, 3590 (1986).

    CAS  Google Scholar 

  33. S. Bouaricha, J.P. Dodelet, D. Guay, J. Huot, S. Boily, and R. Schulz: Effect of carbon-containing compounds on the hydriding behavior of nanocrystalline Mg2Ni. J. Alloys Compd. 307, 226 (2000).

    CAS  Google Scholar 

  34. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 2717 (2002).

    CAS  Google Scholar 

  35. B. Delley: From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756 (2000).

    CAS  Google Scholar 

  36. P. Hohenberg and W. Kohn: Inhomogeneous electron gas. Phys. Rev. 136, 864 (1964).

    Google Scholar 

  37. W. Kohn and L.J. Sham: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133 (1965).

    Google Scholar 

  38. J.P. Perdew and Y. Wang: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).

    CAS  Google Scholar 

  39. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 48, 4978 (1993).

    CAS  Google Scholar 

  40. J.P. Perdew and W. Yue: Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. B 33, 8800 (1986).

    CAS  Google Scholar 

  41. J.F. Herbst and L.G. Hector, Jr.: Structural discrimination via density functional theory and lattice dynamics: Monoclinic Mg2NiH4. Phys. Rev. B 79, 897 (2009).

    Google Scholar 

  42. G.P. Franscis and M.C. Payne: Finite basis set corrections to total energy pseudopotential calculations. J. Phys.: Condens. Matter 2, 4395 (1990).

    Google Scholar 

  43. H.J. Monkhorst and J.D. Pack: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Google Scholar 

  44. P.G. Karamertzanis and S.L. Price: Energy minimization of crystal structures containing flexible molecules. J. Chem. Theory Comput. 2, 1184 (2006).

    CAS  Google Scholar 

  45. L.W. Huang, O. Elkedim, and R. Hamzaoui: First principles investigation of the substitutional doping of Mn in Mg2Ni phase and the electronic structure of Mg3MnNi2 phase. J. Alloys Compd. 509, S328 (2011).

    CAS  Google Scholar 

  46. L.W. Huang, O. Elkedim, M. Nowak, R. Chassagnon, and M. Jurczyk: Mg2−xTixNi (x = 0, 0.5) alloys prepared by mechanical alloying for electrochemical hydrogen storage: Experiments and first-principles calculations. Int. J. Hydrogen Energy 37, 14248 (2012).

    CAS  Google Scholar 

  47. Z. Wu, F. Yang, Z. Bao, S.N. Nyamsi, and Z. Zhang: Improvement in hydrogen storage characteristics of Mg-based metal hydrides by doping nonmetals with high electronegativity: A first-principle study. Comput. Mater. Sci. 78, 83 (2013).

    CAS  Google Scholar 

  48. M. Orchin, R.S. Macomber, A.R. Pinhas, and R.M. Wilson: The Vocabulary and Concepts of Organic Chemistry, 2nd ed. (John Wiley & Sons, Inc., New York, 2005).

    Google Scholar 

  49. S.F. Matar and J. Galy: Coherent view of crystal chemistry and ab initio analyses of Pb(II) and Bi(III) lone pair in square planar coordination. J. Prog. Solid State Chem. 43, 82 (2015).

    CAS  Google Scholar 

  50. Z. Lan, X. Xiao, X. Su, J. Chen, and J. Guo: Effect of doping with aluminium on the electronic structure and hydrogen storage properties of Mg2Ni alloy. Acta Phys.-Chim. Sin. 28, 1877 (2012).

    CAS  Google Scholar 

  51. X. Fan, B. Chen, M. Zhang, D. Li, Z. Liu, and C. Xiao: First-principles calculations on bonding characteristic and electronic property of TiC(111)/TiN(111) interface. Mater. Des. 112, 282 (2016).

    CAS  Google Scholar 

  52. X. Kang, J. Luo, Q. Zhang, and P. Wang: Combined formation and decomposition of dual-metal amidoborane NaMg(NH2BH3)3 for high-performance hydrogen storage. Dalton Trans. 40, 3799 (2011).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (Nos. 51506174 and 21736008) and the Natural Science Foundation of Shaanxi Province (No. 2017JQ5059). The authors acknowledge Prof. Y.H. Chen from School of Electrical Engineering, Xi’an Jiaotong University for providing molecular simulation system and computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaoxiao Zhang.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Zhu, L., Yang, F. et al. Toward the design of interstitial nonmetals co-doping for Mg-based hydrides as hydrogen storage material. Journal of Materials Research 33, 4080–4091 (2018). https://doi.org/10.1557/jmr.2018.353

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.353

Navigation