Skip to main content
Log in

Deformable liquid metal polymer composites with tunable electronic and mechanical properties

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Room-temperature liquid metals, such as eutectic gallium–indium–tin (galinstan), dispersed in a polymer matrix present unique potential as conductors that may have minimal influence on the host polymer mechanical performance while providing enhanced electrical performance. Work described herein systematically evaluates the influence of uncured polydimethylsiloxane (PDMS) viscosity and galinstan loading on final dispersion viscosity and cured modulus. Dispersions of up to 80 vol% galinstan were obtained with relative permittivity values up to 170 that otherwise exhibited similar uncured rheological changes to a solid filler. Cured galinstan-in-PDMS dispersions, however, exhibited a reduced stiffness increase with respect to the host polymer relative to a solid filler. At a critical PDMS viscosity and metal, loading phase inversion to a conductive PDMS-in-metal dispersion was observed. It is anticipated that this work will enable the development of liquid metal polymer composites with independently controlled mechanical and electrical properties for a wide variety of stretchable electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. Y. Zare and I. Shabani: Polymer/metal nanocomposites for biomedical applications. Mater. Sci. Eng., C 60, 195 (2016).

    Article  CAS  Google Scholar 

  2. S-R. Kim, J-H. Kim, and J-W. Park: Wearable and transparent capacitive strain sensor with high sensitivity based on patterned Ag nanowire networks. ACS Appl. Mater. Interfaces 9, 26407 (2017).

    Article  CAS  Google Scholar 

  3. N. Lazarus, C.D. Meyer, S.S. Bedair, G.A. Slipher, and I.M. Kierzewski: Magnetic elastomers for stretchable inductors. ACS Appl. Mater. Interfaces 7, 10080 (2015).

    Article  CAS  Google Scholar 

  4. M. Park, J. Park, and U. Jeong: Design of conductive composite elastomers for stretchable electronics. Nano Today 9, 244 (2014).

    Article  CAS  Google Scholar 

  5. R.A. Mrozek, P.J. Cole, L.A. Mondy, R.R. Rao, L.F. Bieg, and J.L. Lenhart: Highly conductive, melt processable polymer composites based on nickel and low melting eutectic metal. Polymer 51, 2954 (2010).

    Article  CAS  Google Scholar 

  6. H. Stoyanov, M. Kollosche, S. Risse, R. Waché, and G. Kofod: Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles. Adv. Mater. 25, 578 (2013).

    Article  CAS  Google Scholar 

  7. M.H. Al-Saleh and U. Sundararaj: Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47, 1738 (2009).

    Article  CAS  Google Scholar 

  8. A. Voet: Dielectrics and rheology of non-aqueous dispersions. J. Phys. Colloid Chem. 51, 1037 (1947).

    Article  CAS  Google Scholar 

  9. R. Pal: Effect of droplet size on the rheology of emulsions. AIChE J. 42, 3181 (1996).

    Article  CAS  Google Scholar 

  10. J.R. Seth, L. Mohan, C. Locatelli-Champagne, M. Cloitre, and R.T. Bonnecaze: A micromechanical model to predict the flow of soft particle glasses. Nat. Mater. 10, 838 (2011).

    Article  CAS  Google Scholar 

  11. M. Pishvaei, C. Graillat, T.F. McKenna, and P. Cassagnau: Rheological behaviour of polystyrene latex near the maximum packing fraction of particles. Polymer 46, 1235 (2005).

    Article  CAS  Google Scholar 

  12. S.M. Olhero and J.M.F. Ferreira: Influence of particle size distribution on rheology and particle packing of silica-based suspensions. Powder Technol. 139, 69 (2004).

    Article  CAS  Google Scholar 

  13. Y. Itabashi, M. Inoue, and Y. Tada: Effect of filler morphology on fatigue properties of stretchable wires printed with Ag pastes. In International Conference on Electronics Packaging (ICEP) (IEEE, Piscataway, NJ, 2014); p. 752.

    Google Scholar 

  14. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J-H. Ahn, P. Kim, J-Y. Choi, and B.H. Hong: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706 (2009).

    Article  CAS  Google Scholar 

  15. H. Liu, Y. Li, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo, and Z. Guo: Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C 4, 157 (2016).

    Article  CAS  Google Scholar 

  16. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya: Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494 (2009).

    Article  CAS  Google Scholar 

  17. M.D. Bartlett, A. Fassler, N. Kazem, E.J. Markvicka, P. Mandal, and C. Majidi: Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Adv. Mater. 28, 3726 (2016).

    Article  CAS  Google Scholar 

  18. M.D. Dickey: Stretchable and soft electronics using liquid metals. Adv. Mater. 29, 1606425 (2017).

    Article  CAS  Google Scholar 

  19. N. Kazem, T. Hellebrekers, and C. Majidi: Soft multifunctional composites and emulsions with liquid metals. Adv. Mater. 29, 1605985 (2017).

    Article  CAS  Google Scholar 

  20. A. Tabatabai, A. Fassler, C. Usiak, and C. Majidi: Liquid-phase gallium–indium alloy electronics with microcontact printing. Langmuir 29, 6194 (2013).

    Article  CAS  Google Scholar 

  21. M.R. Khan, C. Trlica, J-H. So, M. Valeri, and M.D. Dickey: Influence of water on the interfacial behavior of gallium liquid metal alloys. ACS Appl. Mater. Interfaces 6, 22467 (2014).

    Article  CAS  Google Scholar 

  22. K. Khoshmanesh, S-Y. Tang, J.Y. Zhu, S. Schaefer, A. Mitchell, K. Kalantar-zadeh, and M.D. Dickey: Liquid metal enabled microfluidics. Lab Chip 17, 974 (2017).

    Article  CAS  Google Scholar 

  23. C. Ladd, J-H. So, J. Muth, and M.D. Dickey: 3D printing of free standing liquid metal microstructures. Adv. Mater. 25, 5081 (2013).

    Article  CAS  Google Scholar 

  24. D.P. Parekh, C. Ladd, L. Panich, K. Moussa, and M.D. Dickey: 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels. Lab Chip 16, 1812 (2016).

    Article  CAS  Google Scholar 

  25. B-J. de Gans, P.C. Duineveld, and U.S. Schubert: Inkjet printing of polymers: State of the art and future developments. Adv. Mater. 16, 203 (2004).

    Article  CAS  Google Scholar 

  26. W.D. Teng, M.J. Edirisinghe, and J.R.G. Evans: Optimization of dispersion and viscosity of a ceramic jet printing ink. J. Am. Ceram. Soc. 80, 486 (1997).

    Article  CAS  Google Scholar 

  27. A. Koh, R. Mrozek, and G. Slipher: Characterization and manipulation of interfacial activity for aqueous galinstan dispersions. Adv. Mater. Interfaces 5, 1701240 (2018). https://doi.org/10.1002/admi.201701240.

    Article  CAS  Google Scholar 

  28. Q. Xu, N. Oudalov, Q. Guo, H.M. Jaeger, and E. Brown: Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium–indium. Phys. Fluids 24, 063101 (2012).

    Article  CAS  Google Scholar 

  29. J.M. Gutiérrez, C. González, A. Maestro, I. Solè, C.M. Pey, and J. Nolla: Nano-emulsions: New applications and optimization of their preparation. Curr. Opin. Colloid Interface Sci. 13, 245 (2008).

    Article  CAS  Google Scholar 

  30. Y. Singh, J.G. Meher, K. Raval, F.A. Khan, M. Chaurasia, N.K. Jain, and M.K. Chourasia: Nanoemulsion: Concepts, development and applications in drug delivery. J. Controlled Release 252, 28 (2017).

    Article  CAS  Google Scholar 

  31. R.A. Mrozek, D.B. Knorr, S.W. Spangler, P.J. Cole, and J.L. Lenhart: Impact of precursor size on the chain structure and mechanical properties of solvent-swollen epoxy gels. Soft Matter 8, 11185 (2012).

    Article  CAS  Google Scholar 

  32. C. Song, P. Wang, and H.A. Makse: A phase diagram for jammed matter. Nature 453, 629 (2008).

    Article  CAS  Google Scholar 

  33. I. Masalova, R. Foudazi, and A.Y. Malkin: The rheology of highly concentrated emulsions stabilized with different surfactants. Colloids Surf., A 375, 76 (2011).

    Article  CAS  Google Scholar 

  34. R. Pal: Yield stress and viscoelastic properties of high internal phase ratio emulsions. Colloid Polym. Sci. 277, 583 (1999).

    Article  CAS  Google Scholar 

  35. J. Thelen, M.D. Dickey, and T. Ward: A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing. Lab Chip 12, 3961 (2012).

    Article  CAS  Google Scholar 

  36. T. Hutter, W-A.C. Bauer, S.R. Elliott, and W.T.S. Huck: Formation of spherical and non-spherical eutectic gallium–indium liquid–metal microdroplets in microfluidic channels at room temperature. Adv. Funct. Mater. 22, 2624 (2012).

    Article  CAS  Google Scholar 

  37. J.N. Hohman, M. Kim, G.A. Wadsworth, H.R. Bednar, J. Jiang, M.A. LeThai, and P.S. Weiss: Directing substrate morphology via self-assembly: Ligand-mediated scission of gallium–indium microspheres to the nanoscale. Nano Lett. 11, 5104 (2011).

    Article  CAS  Google Scholar 

  38. Y. Lin, Y. Liu, J. Genzer, and M.D. Dickey: Shape-transformable liquid metal nanoparticles in aqueous solution. Chem. Sci. 8, 3832 (2017).

    Article  CAS  Google Scholar 

  39. S.H. Jeong, S. Chen, J. Huo, E.K. Gamstedt, J. Liu, S-L. Zhang, Z-B. Zhang, K. Hjort, and Z. Wu: Mechanically stretchable and electrically insulating thermal elastomer composite by liquid alloy droplet embedment. Nature 5, 18257 (2015).

    CAS  Google Scholar 

  40. P. Fan, Z. Sun, Y. Wang, H. Chang, P. Zhang, S. Yao, C. Lu, W. Rao, and J. Liu: Nano liquid metal for the preparation of a thermally conductive and electrically insulating material with high stability. RSC Adv. 8, 16232 (2018).

    Article  CAS  Google Scholar 

  41. P.F. Luckham and M.A. Ukeje: Effect of particle size distribution on the rheology of dispersed systems. J. Colloid and Interface Sci. 220, 347 (1999).

    Article  CAS  Google Scholar 

  42. B.K. Sharu, G.P. Simon, W. Cheng, J. Zank, and A.R. Bhattacharyya: Development of microstructure and evolution of rheological characteristics of a highly concentrated emulsion during emulsification. Colloids Surf., A 532, 342 (2017).

    Article  CAS  Google Scholar 

  43. I. Masalova and A.Y. Malkin: Peculiarities of rheological properties and flow of highly concentrated emulsions: The role of concentration and droplet size. Colloid J. 69, 185 (2007).

    Article  CAS  Google Scholar 

  44. S.H. Huang, P. Liu, A. Mokasdar, and L. Hou: Additive manufacturing and its societal impact: A literature review. Int. J. Adv. Manuf. Technol. 67, 1191 (2013).

    Article  Google Scholar 

  45. X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui: 3D printing of polymer matrix composites: A review and prospective. Composites, Part B 110, 442 (2017).

    Article  CAS  Google Scholar 

  46. J. Mewis and A.J.B. Spaull: Rheology of concentrated dispersions. Adv. Colloid Interface Sci. 6, 173 (1976).

    Article  CAS  Google Scholar 

  47. E. Guth: Theory of filler reinforcement. J. Appl. Phys. 16, 20 (1945).

    Article  CAS  Google Scholar 

  48. S-Y. Fu, X-Q. Feng, B. Lauke, and Y-W. Mai: Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites, Part B 39, 933 (2008).

    Article  CAS  Google Scholar 

  49. R.W. Style, R. Boltyanskiy, B. Allen, K.E. Jensen, H.P. Foote, S.J. Wettlaufer, and E.R. Dufresne: Stiffening solids with liquid inclusions. Nat. Phys. 11, 82 (2014).

    Article  CAS  Google Scholar 

  50. Z-M. Dang, J-K. Yuan, J-W. Zha, T. Zhou, S-T. Li, and G-H. Hu: Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog. Mater. Sci. 57, 660 (2012).

    Article  CAS  Google Scholar 

  51. X. Liu, L.P.B. Katehi, and D. Peroulis: Non-toxic liquid metal microstrip resonators 2009. In Asia Pacific Microwave Conference (IEEE, Piscataway, NJ, 2009); p. 131.

    Google Scholar 

  52. R. John: High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69, 327 (2006).

    Article  CAS  Google Scholar 

  53. T. Farrell and D. Greig: The electrical resistivity of nickel and its alloys. J. Phys. C: Solid State Phys. 1, 1359 (1968).

    Article  Google Scholar 

  54. C. Qian and D.J. McClements: Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization. Factors affecting particle size. Food Hydrocolloids 25, 1000 (2011).

    Article  CAS  Google Scholar 

  55. B. Abismaïl, J.P. Canselier, A.M. Wilhelm, H. Delmas, and C. Gourdon: Emulsification by ultrasound: Drop size distribution and stability. Ultrason. Sonochem. 6, 75 (1999).

    Article  Google Scholar 

  56. J. Floury, A. Desrumaux, and J. Lardières: Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innovative Food Sci. Emerging Technol. 1, 127 (2000).

    Article  CAS  Google Scholar 

  57. P. Fernandez, V. André, J. Rieger, and A. Kühnle: Nano-emulsion formation by emulsion phase inversion. Colloids Surf., A 251, 53 (2004).

    Article  CAS  Google Scholar 

  58. U. Daalkhaijav, O.D. Yirmibesoglu, S. Walker, and Y. Mengüç: Rheological modification of liquid metal for additive manufacturing of stretchable electronics. Adv. Mater. Technol. 3, 1700351 (2018). https://doi.org/10.1002/admt.201700351.

    Article  CAS  Google Scholar 

  59. S. Steinmann, W. Gronski, and C. Friedrich: Quantitative rheological evaluation of phase inversion in two-phase polymer blends with cocontinuous morphology. Rheol. Acta 41, 77 (2002).

    Article  CAS  Google Scholar 

  60. S. Steinmann, W. Gronski, and C. Friedrich: Influence of selective filling on rheological properties and phase inversion of two-phase polymer blends. Polymer 43, 4467 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geoffrey Slipher or Randy Mrozek.

Supplementary Material

43578_2018_33172443_MOESM1_ESM.docx

Supplementary Material: Deformable liquid metal polymer composites with tunable electronic and mechanical properties (approximately 879 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, A., Sietins, J., Slipher, G. et al. Deformable liquid metal polymer composites with tunable electronic and mechanical properties. Journal of Materials Research 33, 2443–2453 (2018). https://doi.org/10.1557/jmr.2018.209

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.209

Navigation