Skip to main content
Log in

Biocompatibility and anticancer activity of L-phenyl alanine-coated iron oxide magnetic nanoparticles as potential chrysin delivery system

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2019

This article has been updated

Abstract

In this project, we described the production of chrysin-loaded L-phenyl alanine (Phe)-coated iron oxide magnetic nanoparticles (chrysin@Phe@IOMNs). chrysin@Phe@IOMNs were characterized by X-ray diffraction, thermogravimetric analysis, fourier transform infrared spectroscopy, vibrating sample magnetometer, and transmission electron microscopy techniques. Next, hemocompatibility and biocompatibility of Phe-coated IOMNs were determined by hemolysis and MTT assays on HFF-2 and HEK-293 cell lines, respectively. Finally, the anticancer activity of chrysin@Phe@IOMNs was examined on MCF-7 cell line. The outcomes direct that as-prepared nanocarriers are nontoxic and biocompatible and also chrysin@Phe@IOMNs are appropriate for chrysin delivery and other hydrophobic therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

Change history

References

  1. S. Babaie, S. Ghanbarzadeh, S. Davaran, M. Kouhsoltani, H. Hamishehkar: Nanoethosomes for dermal delivery of Lidocaine. Adv. Pharm. Bull. 5, 549 (2015).

    Article  CAS  Google Scholar 

  2. H. Nosrati, N. Sefidi, A. Sharafi, H. Danafar, and H.K. Manjili: Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg. Chem. 76, 501 (2018).

    Article  CAS  Google Scholar 

  3. H. Zheng, S. Li, Y. Pu, Y. Lai, B. He, and Z. Gu: Nanoparticles generated by PEG-chrysin conjugates for efficient anticancer drug delivery. Eur. J. Pharm. Biopharm. 87, 454 (2014).

    Article  CAS  Google Scholar 

  4. R. Cristescu, A. Visan, G. Socol, A. Surdu, A. Oprea, A. Grumezescu, M. Chifiriuc, R. Boehm, D. Yamaleyeva, and M. Taylor: Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study. Appl. Surf. Sci. 374, 290 (2016).

    Article  CAS  Google Scholar 

  5. K.S. Babu, T.H. Babu, P. Srinivas, K.H. Kishore, U. Murthy, and J.M. Rao: Synthesis and biological evaluation of novel C (7) modified chrysin analogues as antibacterial agents. Bioorg. Med. Chem. Lett. 16, 221 (2006).

    Article  CAS  Google Scholar 

  6. E. Anari, A. Akbarzadeh, and N. Zarghami: Chrysin-loaded PLGA-PEG nanoparticles designed for enhanced effect on the breast cancer cell line. Artif. Cells, Nanomed., Biotechnol. 44, 1410 (2016).

    Article  CAS  Google Scholar 

  7. L.J. Vatten and S. Kvinnsland: Prospective study of height, body mass index and risk of breast cancer. Acta Oncol. 31, 195 (1992).

    Article  CAS  Google Scholar 

  8. G. Ursin, M.P. Longnecker, R.W. Haile, and S. Greenland: A meta-analysis of body mass index and risk of premenopausal breast cancer. Epidemiology, 6, 137 (1995).

    Article  CAS  Google Scholar 

  9. Y. Matsumura and H. Maeda: A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46 (12 Part 1), 6387 (1986).

    CAS  Google Scholar 

  10. S. Ghanbarzadeh, A. Khorrami, S. Arami: Preparation of optimized Naproxen nano liposomes using response surface methodology. J. Pharm. Inv. 44, 33 (2014).

    Article  CAS  Google Scholar 

  11. M. Salehiabar, H. Nosrati, E. Javani, F. Aliakbarzadeh, H.K. Manjili, S. Davaran, and H. Danafar: Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. Int. J. Biol. Macromol. 115, 83 (2018).

    Article  CAS  Google Scholar 

  12. S. Ghanbarzadeh, A. Khorrami, S. Arami: Nonionic surfactantbased vesicular system for transdermal drug delivery. Drug Deliv. 22, 1071 (2015).

    Article  CAS  Google Scholar 

  13. H. Nosrati, N. Rashidi, H. Danafar, and H.K. Manjili: Anticancer activity of tamoxifen loaded tyrosine decorated biocompatible Fe3O4 magnetic nanoparticles against breast cancer cell lines. J. Inorg. Organomet. Polym. Mater. 28, 1178 (2018).

    Article  CAS  Google Scholar 

  14. S.M. Aberoumandi, M. Mohammadhosseini, E. Abasi, S. Saghati, N. Nikzamir, A. Akbarzadeh, Y. Panahi, and S. Davaran: An update on applications of nanostructured drug delivery systems in cancer therapy: A review. Artif. Cells, Nanomed., Biotechnol. 45, 1058 (2017).

    Article  CAS  Google Scholar 

  15. L. Ahmadkhani, A. Akbarzadeh, and M. Abbasian: Development and characterization dual responsive magnetic nanocomposites for targeted drug delivery systems. Artif. Cells, Nanomed., Biotechnol. (2017). doi: https://doi.org/10.1080/21691401.2017.1360323.

    Google Scholar 

  16. A. Shaabani, H. Nosrati, and M. Seyyedhamzeh: Cellulose@ Fe2O3 nanoparticle composites: Magnetically recyclable nanocatalyst for the synthesis of 3-aminoimidazo [1,2-a] pyridines. Res. Chem. Intermed. 41, 3719 (2015).

    Article  CAS  Google Scholar 

  17. A. Shaabani, M.B. Boroujeni, and M.S. Laeini: Copper(II) supported on magnetic chitosan: A green nanocatalyst for the synthesis of 2,4,6-triaryl pyridines by C–N bond cleavage of benzylamines. RSC Adv. 6, 27706 (2016).

    Article  CAS  Google Scholar 

  18. H. Arami, A. Khandhar, D. Liggitt, and K.M. Krishnan: In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 44, 8576 (2015).

    Article  CAS  Google Scholar 

  19. M. Mahmoudi, V. Serpooshan, and S. Laurent: Engineered nanoparticles for biomolecular imaging. Nanoscale 3, 3007 (2011).

    Article  CAS  Google Scholar 

  20. Y. Pan, X. Du, F. Zhao, and B. Xu: Magnetic nanoparticles for the manipulation of proteins and cells. Chem. Soc. Rev. 41, 2912 (2012).

    Article  CAS  Google Scholar 

  21. M. Salehiabar, H. Nosrati, S. Davaran, H. Danafar, and H.K. Manjili: Facile synthesis and characterization of l-aspartic acid coated iron oxide magnetic nanoparticles (IONPs) for biomedical applications. Drug Res. 68, 280 (2018).

    Article  CAS  Google Scholar 

  22. Z. Li, L. Qiang, S. Zhong, H. Wang, and X. Cui: Colloids and Surfaces A: Physicochemical and Engineering Aspects. 436, 1145 (2013).

    Article  CAS  Google Scholar 

  23. M. Rostami, M. Aghajanzadeh, M. Zamani, H.K. Manjili, and H. Danafar: Sono-chemical synthesis and characterization of Fe3O4@ mTiO2–GO nanocarriers for dual-targeted colon drug delivery. Res. Chem. Intermed. 44, 1889 (2018).

    Article  CAS  Google Scholar 

  24. M. Martín, P. Salazar, R. Villalonga, S. Campuzano, J.M. Pingarrón, and J.L. González-Mora: Preparation of core–shell Fe3O4@poly (dopamine) magnetic nanoparticles for biosensor construction. J. Mater. Chem. B 2, 739 (2014).

    Article  Google Scholar 

  25. M. Sousa, J. Rubim, P. Sobrinho, and F. Tourinho: Biocompatible magnetic fluid precursors based on aspartic and glutamic acid modified maghemite nanostructures. J. Magn. Magn. Mater. 225, 67 (2001).

    Article  CAS  Google Scholar 

  26. J.Y. Park, E.S. Choi, M.J. Baek, and G.H. Lee: Colloidal stability of amino acid coated magnetite nanoparticles in physiological fluid. Mater. Lett. 63, 379 (2009).

    Article  CAS  Google Scholar 

  27. D. Patel, Y. Chang, and G.H. Lee: Amino acid functionalized magnetite nanoparticles in saline solution. Curr. Appl. Phys. 9, S32 (2009).

    Article  Google Scholar 

  28. S.P. Schwaminger, P.F. García, G.K. Merck, F.A. Bodensteiner, S. Heissler, S. Günther, and S. Berensmeier: Nature of interactions of amino acids with bare magnetite nanoparticles. J. Phys. Chem. C 119, 23032 (2015).

    Article  CAS  Google Scholar 

  29. K. Pušnik, M. Peterlin, I. Kralj-Cigic, G. Marolt, K. Kogej, A. Mertelj, S. Gyergyek, and D. Makovec: Adsorption of amino acids, aspartic acid and lysine onto iron-oxide nanoparticles. J. Phys. Chem. C 120, 14372 (2016).

    Article  Google Scholar 

  30. H. Nosrati, M. Salehiabar, E. Attari, S. Davaran, H. Danafar, and H.K. Manjili: Green and one-pot surface coating of iron oxide magnetic nanoparticles with natural amino acids and biocompatibility investigation. Appl. Organomet. Chem. 32, e4069 (2018).

    Article  Google Scholar 

  31. H. Nosrati, A. Mojtahedi, H. Danafar, and H. Kheiri Manjili: Enzymatic stimuli-responsive methotrexate-conjugated magnetic nanoparticles for target delivery to breast cancer cells and release study in lysosomal condition. J. Biomed. Mater. Res., Part A 106, 1646 (2018).

    Article  CAS  Google Scholar 

  32. M. Rahimi, S. Shojaei, K.D. Safa, Z. Ghasemi, R. Salehi, B. Yousefi, and V. Shafiei-Irannejad: Biocompatible magnetic tris(2-aminoethyl) amine functionalized nanocrystalline cellulose as a novel nanocarrier for anticancer drug delivery of methotrexate. New J. Chem. 41, 2160 (2017).

    Article  CAS  Google Scholar 

  33. H. Qu, H. Ma, W. Zhou, and C.J. O’Connor: In situ surface functionalization of magnetic nanoparticles with hydrophilic natural amino acids. Inorg. Chim. Acta 389, 60 (2012).

    Article  CAS  Google Scholar 

  34. Z. Durmus, H. Kavas, M.S. Toprak, A. Baykal, T.G. Altınçekiç, A. Aslan, A. Bozkurt, and S. Coşgun: L-lysine coated iron oxide nanoparticles: Synthesis, structural and conductivity characterization. J. Alloys Compd. 484, 371 (2009).

    Article  CAS  Google Scholar 

  35. J. Xie, J. Wang, G. Niu, J. Huang, K. Chen, X. Li, and X. Chen: Human serum albumin coated iron oxide nanoparticles for efficient cell labeling. Chem. Commun. 46, 433 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work has been supported financially by Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran (Grant No: A-12-430-26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Danafar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nosrati, H., Javani, E., Salehiabar, M. et al. Biocompatibility and anticancer activity of L-phenyl alanine-coated iron oxide magnetic nanoparticles as potential chrysin delivery system. Journal of Materials Research 33, 1602–1611 (2018). https://doi.org/10.1557/jmr.2018.148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.148

Navigation