Skip to main content

Advertisement

Log in

In vivo bone regeneration analysis of trilayer coated 316L stainless steel implant in rabbit model

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To increase the corrosion prevention of stainless steel implant and fast recovery due to new bone-cell formation at the orthopedic implant site, in the present investigation, a trilayered (with bioceramic interlayer sandwiched between innermost passivated surface and outermost polymer coating) 316L stainless steel (SS) implant was designed and investigated. It was inferred that this new designed implant invokes faster and more bone-cell formation than uncoated commercially available 316L SS implants. Faster bone-cell formation at the coated implant site reduces the initial threat of implant corrosion. The electrochemical corrosion study proved that this model of coated implants is able to prevent corrosion up to 90% better than uncoated commercially available 316L SS. Subsequently, preclinical studies in the rabbit bone defect model (which included histology, radiology, fluorochrome labeling, push-out test, and scanning electron microscopy taken after 45 and 90 days) proved higher rate of new bone tissue formation and better push-out strength between tissue in contact and the coated implant. The toxicological study of vital organs like liver, kidney, and heart also exhibited no abnormality. The outcome of the experimentations indicates suitability of this trilayered 316L SS implant for bone repair and healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. B.M. Holzapfel, J.C. Reichert, J-T. Schantz, U. Gbureck, L. Rackwitz, U. Noth, F. Jakob, M. Rudert, J. Groll, and D.W. Hutmacher: How smart do biomaterials need to be? A translational science and clinical point of view. Adv. Drug Delivery Rev. 65, 581 (2013).

    Article  CAS  Google Scholar 

  2. T. Thamaraiselvi and S. Rajeswari: Biological evaluation of bioceramic materials—A review. Trends Biomater. Artif. Organs 18, 9 (2004).

    Google Scholar 

  3. M. Vallet-Regi: Ceramics for medical applications. J. Chem. Soc., Dalton Trans., 97 (2001).

  4. W. Rieger, S. Leyen, S. Kobel, and W. Weber: The use of bioceramics in dental and medical applications. Digital Dent. News 3, 6 (2009).

    Google Scholar 

  5. L.L. Hench and J. Wilson: An Introduction to Bioceramics (World Scientific, Singapore, 1993).

    Book  Google Scholar 

  6. X. Lin, K. De Groot, D. Wang, Q. Hu, D. Wismeijer, and Y. Liu: Suppl 1-M4: A review paper on biomimetic calcium phosphate coatings. Open Biomed. Eng. J. 9, 56 (2015).

    Article  CAS  Google Scholar 

  7. R.Z. LeGeros: Properties of osteoconductive biomaterials: Calcium phosphates. Clin. Orthop. Relat. Res. 395, 81 (2002).

    Article  Google Scholar 

  8. B.G.X. Zhang, D.E. Myers, G.G. Wallace, M. Brandt, and P.F.M. Choong: Bioactive coatings for orthopaedic implants — Recent trends in development of implant coatings. Int. J. Mol. Sci. 15, 11878 (2014).

    Article  Google Scholar 

  9. N.R. Babu, S. Manwatkar, K.P. Rao, and T.S.S. Kumar: Bioactive coatings on 316L stainless steel implants. Trends Biomater. Artif. Organs 17, 43 (2004).

    Google Scholar 

  10. J. He, T. Huang, L. Gan, Z. Zhou, B. Jiang, Y. Wu, F. Wu, and Z. Gu: Collagen-infiltrated porous hydroxyapatite coating and its osteogenic properties: In vitro and in vivo study. J. Biomed. Mater. Res., Part A 100, 1706 (2012).

    Article  Google Scholar 

  11. N. Saran, R. Zhang, and R.E. Turcotte: Osteogenic protein-1 delivered by hydroxyapatite-coated implants improves bone ingrowth in extracortical bone bridging. Clin. Orthop. Relat. Res. 469, 1470 (2011).

    Article  Google Scholar 

  12. R. Kargupta, S. Bok, C.M. Darr, B.D. Crist, K. Gangopadhyay, S. Gangopadhyay, and S. Sengupta: Coatings and surface modifications imparting antimicrobial activity to orthopedic implants. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 6, 475 (2014).

    CAS  Google Scholar 

  13. J.D. Bumgardner, R. Wiser, P.D. Gerard, P. Bergin, B. Chestnutt, M. Marini, V. Ramsey, S.H. Elder, and J.A. Gilbert: Chitosan: Potential use as a bioactive coating for orthopaedic and craniofacial/dental implants. J. Biomater. Sci., Polym. Ed. 14, 423 (2003).

    Article  CAS  Google Scholar 

  14. V.M. Correlo, L.F. Boesel, M. Bhattacharya, J.F. Mano, N.M. Neves, and R.L. Reis: Hydroxyapatite reinforced chitosan and polyester blends for biomedical applications. Macromol. Mater. Eng. 290, 1157 (2005).

    Article  CAS  Google Scholar 

  15. S.K. Mishra and S. Kannan: Development, mechanical evaluation and surface characteristics of chitosan/polyvinyl alcohol based polymer composite coatings on titanium metal. J. Mech. Behav. Biomed. Mater. 40, 314 (2014).

    Article  CAS  Google Scholar 

  16. S. Zankovych, M. Diefenbeck, J. Bossert, T. Muckley, C. Schrader, J. Schmidt, H. Schubert, S. Bischoff, M. Faucon, and U. Finger: The effect of polyelectrolyte multilayer coated titanium alloy surfaces on implant anchorage in rats. Acta Biomater. 9, 4926 (2013).

    Article  CAS  Google Scholar 

  17. J.M. Anderson: Biological responses to materials. Annu. Rev. Mater. Res. 31, 81 (2001).

    Article  CAS  Google Scholar 

  18. A.P. Wieslander, M.K. Nordin, B. Hansson, B. Baldetorp, and P.T.T. Kjellstrand: In vitro toxicity of biomaterials determined with cell density, total protein, cell cycle distribution and adenine nucleotides. Biomater. Artif. Cells Immobil. Biotechnol. 21, 63 (1993).

    CAS  Google Scholar 

  19. P. Majee and P.K. Mitra: Preventive coating of tri-calcium phosphate (TCP) on implantable 304L SS. Icastor J. Eng. 8, 117 (2015).

    Google Scholar 

  20. T. Kokubo and H. Takadama: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907 (2006).

    Article  CAS  Google Scholar 

  21. J.A. Bishop, A.A. Palanca, M.J. Bellino, and D.W. Lowenberg: Assessment of compromised fracture healing. J. Am. Acad. Orthop. Surg. 20, 273 (2012).

    Article  Google Scholar 

  22. K-K. Chew, S.H.S. Zein, and A.L. Ahmad: The corrosion scenario in human body: Stainless steel 316L orthopaedic implants. Nat. Sci. 4, 184 (2012).

    CAS  Google Scholar 

  23. U. Kamachimudali, T.M. Sridhar, and B. Raj: Corrosion of bio implants. Sadhana 28, 601 (2003).

    Article  Google Scholar 

  24. J.J. Kim and Y.M. Young: Study on the passive film of type 316 stainless steel. Int. J. Electrochem. Sci. 8, 11847 (2013).

    Article  Google Scholar 

  25. R. Bosco, J. Van Den Beucken, S. Leeuwenburgh, and J. Jansen: Surface engineering for bone implants: A trend from passive to active surfaces. Coatings 2, 95 (2012).

    Article  CAS  Google Scholar 

  26. T.V. Thamaraiselvi and S. Rajeswari: Electrochemical behaviour of alkali treated and hydroxyapatite coated 316 LVM. Trends Biomater. Artif. Organs 18, 242 (2005).

    Google Scholar 

  27. S. Dhar and P.K. Mitra: Electrochemical behaviour of hydroxyapatite coatings on phosphate passivated 316L stainless steel in Ringer’s solution. Icastor J. Eng. 5, 155 (2012).

    Google Scholar 

  28. S. Dhar, P.K. Mitra, and B. Duari: Corrosion behaviour of hydroxyapatite coatings on borate and phosphate-passivated 316L stainless steel in Ringer’s solution. Paint India 62, 63 (2012).

    CAS  Google Scholar 

  29. T.L. Arinzeh, S.J. Peter, M.P. Archambault, C. Van Den Bos, S. Gordon, K. Kraus, A. Smith, and S. Kadiyala: Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J. Bone Jt. Surg. Am. 85, 1927 (2003).

    Article  Google Scholar 

  30. S.M. van Gaalen, M.C. Kruyt, R.E. Geuze, J.D. de Bruijn, J. Alblas, and W.J.A. Dhert: Use of fluorochrome labels in in vivo bone tissue engineering research. Tissue Eng., Part B 16, 209 (2010).

    Article  Google Scholar 

  31. J.L. Kovar, X. Xu, D. Draney, A. Cupp, M.A. Simpson, and D.M. Olive: Near-infrared-labeled tetracycline derivative is an effective marker of bone deposition in mice. Anal. Biochem. 416, 167 (2011).

    Article  CAS  Google Scholar 

  32. L.E. Dahners and G.D. Bos: Fluorescent tetracycline labeling as an aid to debridement of necrotic bone in the treatment of chronic osteomyelitis. J. Orthop. Trauma 16, 345 (2002).

    Article  Google Scholar 

  33. C.J. Gibson, V.F. Thornton, and W.A.B. Brown: Incorporation of tetracycline into impeded and unimpeded mandibular incisors of the mouse. Calcif. Tissue Int. 26, 29 (1978).

    Article  CAS  Google Scholar 

  34. Z. Shi, K.G. Neoh, E.T. Kang, C. Poh, and W. Wang: Bacterial adhesion and osteoblast function on titanium with surface-grafted chitosan and immobilized RGD peptide. J. Biomed. Mater. Res., Part A 86, 865 (2008).

    Article  Google Scholar 

  35. A. Di Martino, M. Sittinger, and M.V. Risbud: Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26, 5983 (2005).

    Article  Google Scholar 

  36. N. Ohara, Y. Hayashi, S. Yamada, S-K. Kim, T. Matsunaga, K. Yanagiguchi, and T. Ikeda: Early gene expression analyzed by cDNA microarray and RT-PCR in osteoblasts cultured with water-soluble and low molecular chitooligosaccharide. Biomaterials 25, 1749 (2004).

    Article  CAS  Google Scholar 

  37. J.B. Brunski, D.A. Puleo, and A. Nanci: Biomaterials and biomechanics of oral and maxillofacial implants: Current status and future developments. Int. J. Oral Maxillofac. Implants 15, 15 (1999).

    Google Scholar 

  38. D.H.R. Kempen, L. Lu, A. Heijink, T.E. Hefferan, L.B. Creemers, A. Maran, M.J. Yaszemski, and W.J.A. Dhert: Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. Biomaterials 30, 2816 (2009).

    Article  CAS  Google Scholar 

  39. C.B. Johansson, C.H. Han, A. Wennerberg, and T. Albrektsson: A quantitative comparison of machined commercially pure titanium and titanium–aluminum–vanadium implants in rabbit bone. Int. J. Oral Maxillofac. Implants 13, 315 (1998).

    CAS  Google Scholar 

  40. Z. Wang and Q. Hu: Preparation and properties of three-dimensional hydroxyapatite/chitosan nanocomposite rods. Biomed. Mater. 5, 045007 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Technical Education Quality Improvement Program Phase II (TEQIP-II) for financial support. The authors would also like to thank the Director, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India, and Vice Chancellor, West Bengal University of Animal and Fishery Sciences, Kolkata, India, for their generous and kind support to this work. Dr. Howa Begam (School of Bioscience and Engineering, Jadavpur University, Kolkata, India) and all the personnel involved for characterization of materials are sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samit Kumar Nandi or Biswanath Kundu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majee, P., Dhar, S., Mitra, P.K. et al. In vivo bone regeneration analysis of trilayer coated 316L stainless steel implant in rabbit model. Journal of Materials Research 33, 2106–2117 (2018). https://doi.org/10.1557/jmr.2018.119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.119

Navigation