Skip to main content
Log in

Modeling of equilibrium conformation of Pt2Ru3 nanoparticles using the density functional theory and Monte Carlo simulations

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, the density functional theory (DFT) and Monte Carlo (MC) simulations were conducted to determine the equilibrium conformation of Pt2Ru3 nanoparticles with diameters 1.0–3.5 nm at finite temperature. DFT calculations were carried out to estimate the binding energy using slab configurations and energy could be correlated with some structural descriptors and multilinear regression equations to calculate the binding energy from descriptors related to the number of a specific bond to neighboring atoms. MC simulations were carried out to obtain the equilibrium conformation of atoms in Pt2Ru3 at 150–363 K. MC simulations’ result shows that atoms of the same element tend to segregate each other, and Pt/Ru ratio on the surface increases with increasing particle size; also, most of the Pt are located on the surface whereas most of the Ru are located on the subsurface or at the core sites. It is qualitatively exhibited that the Pt/Ru ratio on the surface decreases with increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. H.A. Gasteiger, N.M. Markovic, and P.N. Ross: H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt–Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. J. Phys. Chem. 99, 8290 (1995).

    Article  CAS  Google Scholar 

  2. E.P.M. Leiva, E. Santos, and T.J. Iwasita: The effect of adsorbed carbon monoxide on hydrogen adsorption and hydrogen evolution on platinum. J. Electroanal. Chem. Interfacial Electrochem. 215, 357 (1986).

    Article  CAS  Google Scholar 

  3. O.A. Petrii and G.A. Tsirlina: Electrocatalytic activity prediction for hydrogen electrode reaction: Intuition, art, science. Electrochim. Acta 39, 1739 (1994).

    Article  CAS  Google Scholar 

  4. V. Ponce and G.C. Bond: Catalysis by Metals and Alloys; Studies in Surface Science and Catalysis 95 (Elsevier, Amsterdam, 1995).

    Google Scholar 

  5. M. Krausa and W. Vielstich: Study of the electrocatalytic influence of Pt/Ru and Ru on the oxidation of residues of small organic molecules. J. Electroanal. Chem. 379, 307 (1994).

    Article  Google Scholar 

  6. T. Frelink, W. Visscher, and J.A.R. Vanveen: On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surf. Sci. 335, 353 (1995).

    Article  CAS  Google Scholar 

  7. Y.Y. Tong, H.S. Kim, P.K. Babu, P. Waszczuk, A. Wieckowski, and E. Oldfield: An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst. J. Am. Chem. Soc. 124, 468 (2002).

    Article  CAS  Google Scholar 

  8. M. Watanabe and S. Motoo: Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J. Electroanal. Chem. Interfacial Electrochem. 60, 267 (1975).

    Article  CAS  Google Scholar 

  9. T. Yajima, N. Wakabayashi, H. Uchida, and M. Watanabe: Adsorbed water for the electro-oxidation of methanol at Pt–Ru alloy. Chem. Commun. 7, 828 (2003).

    Article  CAS  Google Scholar 

  10. M. Watanabe and S. Motoo: Electrocatalysis by ad-atoms: Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J. Electroanal. Chem. 60, 275 (1975).

    Article  CAS  Google Scholar 

  11. B.C. Hanand and G. Ceder: Effect of coadsorption and Ru alloying on the adsorption of CO on Pt. Phys. Rev. B: Condens. Matter Mater. Phys. 74, 205418 (2006).

    Article  CAS  Google Scholar 

  12. P.K. Babu, H.S. Kim, E. Oldfield, and A. Wieckowski: Electronic alterations caused by ruthenium in Pt–Ru alloy nanoparticles as revealed by electrochemical NMR. J. Phys. Chem. B 107, 7595 (2003).

    Article  CAS  Google Scholar 

  13. P.K. Babu, H.S. Kim, S.T. Kuk, J.H. Chung, E. Oldfield, E.S. Smotkin, and A. Wieckowski: Activation of nanoparticle PtRu fuel cell catalysts by heat treatment: A 195 Pt NMR and electrochemical study. J. Phys. Chem. B 109, 17192 (2005).

    Article  CAS  Google Scholar 

  14. T. Takeguchi, T. Yamanaka, K. Asakura, E.N. Muhamad, K. Uosaki, and W. Ueda: Evidence of non electrochemical shift reaction on a CO-tolerant high-entropy state Pt–Ru anode catalyst for reliable and efficient residential fuel cell systems. J. Am. Chem. Soc. 134, 14508 (2012).

    Article  CAS  Google Scholar 

  15. K.M. Bratlie, H. Lee, K. Komvopoulos, P.D. Yang, and G.A. Somorjai: Pt nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 7, 3097 (2007).

    Article  CAS  Google Scholar 

  16. Y.J. Xiong, J.M. McLellan, J.Y. Chen, Y.D. Yin, Z.Y. Li, and Y.N. Xia: Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. J. Am. Chem. Soc. 127, 17118 (2005).

    Article  CAS  Google Scholar 

  17. K.H. Park, K. Jang, H.J. Kim, and S.U. Son: Near-mono disperse tetrahedral rhodium nanoparticles on charcoal the shape-dependent catalytic hydrogenation of arenes. Angew. Chem., Int. Ed. 46, 1152 (2007).

    Article  CAS  Google Scholar 

  18. S.H. Zhou, B. Varughese, B. Eichhorn, G. Jackson, and K. McIlwrath: Pt–Cu core–shell and alloy nanoparticles for heterogeneous NOx reduction: Anomalous stability and reactivity of a core–shell nanostructure. Angew. Chem., Int. Ed. 117, 4515 (2005).

    Google Scholar 

  19. S. Alayoglu, A.U. Nilekar, M. Mavrikakis, and B. Eichhorn: Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 7, 333 (2008).

    Article  CAS  Google Scholar 

  20. J.I. Park, M.G. Kim, Y.W. Jun, J.S. Lee, and W.R. Lee: Characterization of super paramagnetic “core–shell” nanoparticles and monitoring their anisotropic phase transition to ferromagnetic “solid solution” nanoalloys. J. Am. Chem. Soc. 126, 9072 (2004).

    Article  CAS  Google Scholar 

  21. C.W. Hills, M.S. Nashner, A.I. Frenkel, J.R. Shapley, and R.G. Nuzzo: Carbon support effects on bimetallic Pt–Ru nanoparticles formed from molecular precursors. Langmuir 15, 690 (1999).

    Article  CAS  Google Scholar 

  22. M.S. Nashner, A.I. Frenkel, D.L. Adler, J.R. Shapley, and R.G. Nuzzo: Structural characterization of carbon-supported platinum–ruthenium nanoparticles from the molecular cluster precursor PtRu5C(CO)16. J. Am. Chem. Soc. 119, 7760 (1997).

    Article  CAS  Google Scholar 

  23. J.W. Long, R.M. Stroud, K.E. Swider-Lyons, and D.R. Rolison: How to make electrocatalysts more active for direct methanol oxidation avoid PtRu bimetallic alloys. J. Phys. Chem. B 104, 9772 (2000).

    Article  CAS  Google Scholar 

  24. K. Yuge: Segregation of Pt28Rh27 bimetallic nanoparticles: A first-principles study. J. Phys.: Condens. Matter 22, 245401 (2010).

    Google Scholar 

  25. S. Alayoglu, P. Zavalij, B. Eichhorn, O. Wang, A.I. Frenkel, and P. Chupas: Structural and architectural evaluation of bimetallic nanoparticles: A case study of Pt–Ru core-shell and alloy nanoparticles. ACS Nano 3, 3127 (2009).

    Article  CAS  Google Scholar 

  26. M.T.M. Koper, A.P.J. Jansen, R.A. van Santen, J.J. Lukkien, and P.A.J. Hilbers: Monte Carlo simulations of a simple model for the electrocatalytic CO oxidation on platinum. J. Chem. Phys. 109, 6051 (1998).

    Article  CAS  Google Scholar 

  27. B. Andreaus and M. Eikerling: Active site model for CO adlayer electrooxidation on nanoparticle catalysts. J. Electroanal. Chem. 607, 121 (2007).

    Article  CAS  Google Scholar 

  28. C. Saravanan, N.M. Markovic, M. Head-Gordon, and P.N. Ross: Stripping and bulk CO electro-oxidation at the Pt–electrode interface: Dynamic Monte Carlo simulations. J. Chem. Phys. 114, 6404 (2001).

    Article  CAS  Google Scholar 

  29. F. Maillard, G.-Q. Lu, A. Wieckowski, and U. Stimming: Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation. J. Phys. Chem. B 109, 16230 (2005).

    Article  CAS  Google Scholar 

  30. B. Andreaus, F. Maillard, J. Kocylo, E.R. Savinova, and M. Eikerling: Kinetic modeling of CO ad monolayer oxidation on carbon-supported platinum nanoparticles. J. Phys. Chem. B 110, 21028 (2006).

    Article  CAS  Google Scholar 

  31. V. Petukhov: Effect of molecular mobility on kinetics of an electrochemical Langmuir–Hinshelwood reaction. Chem. Phys. Lett. 277, 539 (1997).

    Article  CAS  Google Scholar 

  32. C. Saravanan, M.T.M. Koper, N.M. Markovic, M. Head-Gordon, and P.N. Ross: Modeling base voltammetry and CO electrooxidation at the Pt(111)-electrolyte interface: Monte Carlo simulations including anion adsorption. Phys. Chem. Chem. Phys. 4, 2660 (2002).

    Article  CAS  Google Scholar 

  33. P.A. Dowben and A. Miller, eds.: Surface Segregation Phenomena (CRC Press, Boca Raton, Florida, 1990).

    Google Scholar 

  34. J.A. Rodriguez: Physical and chemical properties of bimetallic surfaces. Surf. Sci. Rep. 24, 223 (1996).

    Article  CAS  Google Scholar 

  35. M. Polak and L. Rubinovich: The interplay of surface segregation and atomic order in alloys. Surf. Sci. Rep. 38, 127 (2000).

    Article  CAS  Google Scholar 

  36. B. Shan, L. Wang, S. Yang, J. Hyun, N. Kapur, Y. Zhao, J. Nicholas, and K. Cho: First-principles-based embedded atom method for PdAu nanoparticles. Phys. Rev. B: Condens. Matter Mater. Phys. 80, 035404 (2009).

    Article  CAS  Google Scholar 

  37. G. Wang, M.A. Van Hove, and P.N. Ross: Monte Carlo simulations of segregation in Pt–Ni catalyst nanoparticles. J. Chem. Phys. 122, 024706 (2005).

    Article  CAS  Google Scholar 

  38. K. Yuge, A. Seko, A. Kuwabara, F. Oba, and I. Tanaka: First-principles study of bulk ordering and surface segregation in Pt–Rh binary alloys. Phys. Rev. B: Condens. Matter Mater. Phys. 74, 174202 (2006).

    Article  CAS  Google Scholar 

  39. T. Sato, K. Okaya, K. Kunimatsu, H. Yano, M. Watanabe, and H. Uchida: Effect of particle size and composition on CO-tolerance at Pt–Ru/C catalysts analyzed by in situ attenuated total reflection FTIR spectroscopy. ACS Catal. 2, 450 (2012).

    Article  CAS  Google Scholar 

  40. T. Sato, K. Kunimatsu, K. Okaya, H. Yano, M. Watanabe, and H. Uchida: In situ ATR-FTIR analysis of the CO-tolerance mechanism on Pt2Ru3/C catalysts prepared by the nano capsule method. Energy Environ. Sci. 4, 433 (2011).

    Article  CAS  Google Scholar 

  41. B. Delley: Fast calculation of electrostatics in crystals and large molecules. J. Chem. Phys. 100, 6107 (1996).

    Article  CAS  Google Scholar 

  42. B. Delley: From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756 (2000).

    Article  CAS  Google Scholar 

  43. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  44. Md.K. Alam, S. Saito, and H. Takaba: Density functional theory study on the adsorption of H, OH, and CO and coadsorption of CO with H/OH on the Pt2Ru3 surfaces. J. Mater. Res. 31, 2617 (2016).

    Article  CAS  Google Scholar 

  45. M.T.M. Koper, T.E. Shubina, and R.A. van Santen: Periodic density functional study of CO and OH adsorption on Pt–Ru alloy surfaces: Implications for CO tolerant fuel cell catalysts. J. Phys. Chem. B 106, 686 (2002).

    Article  CAS  Google Scholar 

  46. T.E. Shubina and M.T.M. Koper: Quantum-chemical calculations of CO and OH interacting with bimetallic surfaces. Electrochim. Acta 47, 3621 (2002).

    Article  CAS  Google Scholar 

  47. C.T. Lee, W.T. Yang, and R.G. Parr: Development of the Colle Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter Mater. Phys. 37, 785 (1988).

    Article  CAS  Google Scholar 

  48. E.W. Hansen and M. Neurock: First-principles-based Monte Carlo simulation of ethylene hydrogenation kinetics on Pd. J. Catal. 196, 241 (2000).

    Article  CAS  Google Scholar 

  49. K. Reuter, D. Frenkel, and M. Scheffler: The steady state of heterogeneous catalysis, studied by first-principles statistical mechanics. Phys. Rev. Lett. 93, 116104 (2004).

    Article  CAS  Google Scholar 

  50. M.P. Allen and D.J. Tildesley: Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).

    Google Scholar 

  51. L. Eriksson, E. Johansson, M. Muller, and S.J. Wold: On the selection of training set in environmental QSAR when compounds are clustered. Chemometrics 14, 599 (2000).

    Article  CAS  Google Scholar 

  52. A. Tropsha, P. Gramatica, and V.K. Gombar: The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci. 22, 69 (2003).

    Article  CAS  Google Scholar 

  53. R. Todeschini, V. Consonni, A. Mauri, and M. Pavan: Detecting “bad” regression models: Multicriteria fitness functions in regression analysis. Anal. Chim. Acta 515, 199 (2004).

    Article  CAS  Google Scholar 

  54. J. Topliss and P.J. Edwards: Chance factors in studies of quantitative structure-activity relationships. J. Med. Chem. 22, 1238 (1979).

    Article  CAS  Google Scholar 

  55. V. Consonni, D. Ballabio, and R.J. Todeschini: Comments on the definition of the Q2 parameter for QSAR validation. J. Chem. Inf. Model. 49, 1669 (2009).

    Article  CAS  Google Scholar 

  56. E. Antolini, L. Giorgi, F. Cardellini, and E. Passalacqua: Physical and morphological characteristics and electrochemical behavior in PEM fuel cells of PtRu/C catalysts. J. Solid State Electrochem. 5, 131 (2001).

    Article  CAS  Google Scholar 

  57. T.A. Yamamoto, S. Kageyama, S. Seino, H. Nitani, T. Nakagawa, R. Horioka, Y. Honda, K. Ueno, and H. Daimon: Methanol oxidation catalysis and substructure of PtRu/C bimetallic nanoparticles synthesized by a radiolytic process. Appl. Catal., A 396, 68 (2011).

    Article  CAS  Google Scholar 

  58. D. Cheng, S. Huang, and W. Wang: The structure of 55-atom Cu-Au bimetallic clusters: Monte Carlo study. Eur. Phys. J. D 39, 41 (2005).

    Article  CAS  Google Scholar 

  59. D. Cheng, S. Huang, and W. Wang: Structures of small Pd–Pt bimetallic clusters by Monte Carlo simulation. Chem. Phys. 330, 423 (2006).

    Article  CAS  Google Scholar 

  60. P.P. Roy, S.P. Paul, I. Mitra, and K. Roy: On two novel parameters for validation of predictive QSAR models. Molecules 14, 1660 (2009).

    Article  CAS  Google Scholar 

  61. A.R. Katritzky, M. Kuanar, S. Slavov, and C. Dennis Hall: Quantitative correlation of physical and chemical properties with chemical structure: Utility for prediction. Chem. Rev. 110, 5714 (2010).

    Article  CAS  Google Scholar 

  62. H. Nitani, T. Nakagawa, D. Daimon, Y. Kurobe, T. Ono, Y. Honda, A. Koizumi, S. Seino, and T.A. Yamamoto: Methanol oxidation catalysis and substructure of PtRu bimetallic nanoparticles. Appl. Catal., A 326, 194 (2007).

    Article  CAS  Google Scholar 

  63. G. Wang, M.A.V. Hove, P.N. Ross, and M.I. Baskes: Quantitative prediction of surface segregation in bimetallic Pt–M alloy nanoparticles (M = Ni, Re, Mo). Surf. Sci. 79, 28 (2005).

    CAS  Google Scholar 

  64. G. Wang, M.A.V. Hove, P.N. Ross, and M.I. Baskes: Monte Carlo simulations of segregation in Pt–Ni catalyst nanoparticles. J. Chem. Phys. 122, 024706 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromitsu Takaba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.K., Saito, S. & Takaba, H. Modeling of equilibrium conformation of Pt2Ru3 nanoparticles using the density functional theory and Monte Carlo simulations. Journal of Materials Research 32, 1573–1581 (2017). https://doi.org/10.1557/jmr.2017.57

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.57

Navigation