Skip to main content
Log in

Recent progress in understanding high temperature dynamical properties and fragility in metallic liquids, and their connection with atomic structure

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The advent of containerless processing techniques has opened the possibility of high quality measurements of equilibrium and metastable liquids. This review focuses on the structure and dynamics of metallic liquids at high temperature. A clear connection between structure, viscosity, and fragility has emerged from recent containerless experiments and molecular dynamics simulation studies. The temperature-dependent changes of liquid structures are smaller for the stronger liquids. The onset of cooperativity usually occurs above the liquidus temperature at a characteristic temperature TA, where the dynamics change from Arrhenius to non-Arrhenius behavior; this is accompanied by the onset of development of more spatially extended structural order in the liquids. Several metrics for fragility, consistent with the traditional fragility parameter, can be developed from the structural and dynamical properties at high temperature. It is becoming increasingly evident from theory and experiments that the fundamental properties that determine fragility are the repulsive part of the interatomic potential and the anharmonicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. M.H. Cohen and D. Turnbull: Composition requirements for glass formation in metallic and ionic systems. Nature 189, 131 (1961).

    Article  CAS  Google Scholar 

  2. N.J. Grant and B.C. Giessen, eds.: Rapidly Quenched Metals: Second International Conference (MIT Press, Cambridge, Mass, 1976).

    Google Scholar 

  3. C.C. Koch: Materials synthesis by mechanical alloying. Annu. Rev. Mater. Sci. 19, 121 (1989).

    Article  CAS  Google Scholar 

  4. F.V. Nolfi, Jr.: Phase Transformations During Irradiation (Applied Science Publishers, London, 1983).

    Google Scholar 

  5. M.H. Bhat, V. Molinero, E. Soignard, V.C. Solomon, S. Sastry, J.L. Yarger, and C.A. Angell: Vitrification of a monatomic metallic liquid. Nature 448, 787 (2007).

    Article  CAS  Google Scholar 

  6. H. Magnan, D. Chandesris, G. Rossi, G. Jezequel, K. Hricovini, and J. Lecante: Determination of local order in amorphous cobalt films. Phys. Rev. B 40, 9989 (1989).

    Article  CAS  Google Scholar 

  7. Y-W. Kim, H-M. Lin, and T.F. Kelly: Amorphous solidification of pure metals in submicron spheres. Acta Metall. 37, 247 (1989).

    Article  CAS  Google Scholar 

  8. L. Zhong, J. Wang, H. Sheng, Z. Zhang, and S.X. Mao: Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512, 177 (2014).

    Article  CAS  Google Scholar 

  9. C.A. Angell: Formation of glasses from liquids and biopolymers. Science 267, 1924 (1995).

    Article  CAS  Google Scholar 

  10. S.D. Durbin and G. Fehrer: Protein crystallization. Ann. Rev. Phys. Chem. 47, 171 (1996).

    Article  CAS  Google Scholar 

  11. W. Klement, R.H. Willens, and P. Duwez: Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869 (1960).

    Article  CAS  Google Scholar 

  12. H.W. Kui, A.L. Greer, and D. Turnbull: Formation of bulk metallic glass by fluxing. Appl. Phys. Lett. 45, 615 (1984).

    Article  CAS  Google Scholar 

  13. A. Inoue, N. Matsumoto, and T. Masumoto: Al–Ni–Co–Y amorphous alloys with high mechanical strengths, wide supercooled liquid regions and large glass-forming capacity. Mater. Trans. JIM 31, 493 (1990).

    Article  CAS  Google Scholar 

  14. A. Peker and W.L. Johnson: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).

    Google Scholar 

  15. M.M. Trexler and N.N. Thadhani: Mechanical properties of bulk metallic glasses. Prog. Mater. Sci. 55, 759 (2010).

    Article  CAS  Google Scholar 

  16. J.R. Scully, A. Gebert, and J.H. Payer: Corrosion and related mechanical properties of bulk metallic glasses. J. Mater. Res. 22, 302 (2007).

    Article  CAS  Google Scholar 

  17. M.E. McHenry, M.A. Willard, and D.E. Laughlin: Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 44, 291 (1999).

    Article  CAS  Google Scholar 

  18. W.H. Wang, C. Dong, and C.H. Shek: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 (2004).

    Article  CAS  Google Scholar 

  19. A. Inoue and A. Takeuchi: Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243 (2011).

    Article  CAS  Google Scholar 

  20. A.K. Gangopadhyay, G.W. Lee, K.F. Kelton, J.R. Rogers, A.I. Goldman, D.S. Robinson, T.J. Rathz, and R.W. Hyers: Beamline electrostatic levitator for in situ high energy X-ray diffraction studies of levitated solids and liquids. Rev. Sci. Instrum. 76, 073901 (2005).

    Article  CAS  Google Scholar 

  21. N.A. Mauro and K.F. Kelton: A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy X-ray scattering studies of equilibrium and supercooled liquids. Rev. Sci. Instrum. 82, 035114 (2011).

    Article  CAS  Google Scholar 

  22. W-K. Rhim, S.K. Chung, D. Barber, K.F. Man, G. Gutt, A. Rulison, and R.E. Spjut: An electrostatic levitator for high-temperature containerless materials processing in l g. Rev. Sci. Instrum. 64, 2961 (1993).

    Article  CAS  Google Scholar 

  23. L. Gao, Z. Shi, D. Li, G. Zhang, Y. Yang, A. Mclean, and K. Chattopadhyay: Applications of electromagnetic levitation and development of mathematical models: A review of the last 15 years (2000 to 2015). Metall. Mater. Trans. B 47, 537 (2016).

    Article  CAS  Google Scholar 

  24. J.K.R. Weber, D.S. Hampton, D.R. Morkloy, C.A. Rey, M.M. Zatarski, and P.C. Nordine: Aero-acoustic levitation: A method for containerless liquid-phase processing at high temperatures. Rev. Sci. Instrum. 65, 456 (2005).

    Article  Google Scholar 

  25. K.F. Kelton: Kinetic and structural fragility—A correlation between structures and dynamics in metallic liquids and glasses. J. Phys.: Condens. Matter 29, 023002 (2017).

    CAS  Google Scholar 

  26. L-M. Martinez and C.A. Angell: A thermodynamic connection to the fragility of glass-forming liquids. Nature 410, 663 (2001).

    Article  CAS  Google Scholar 

  27. C.A. Angell: Strong and fragile liquids. In Relaxations in Complex Systems, K.L. Ngai and G.B. Wright, eds. (U.S. GPO, Washington, D.C., 1985); p. 3.

    Google Scholar 

  28. M.E. Blodgett, T. Egami, Z. Nussinov, and K.F. Kelton: Proposal for universality in the viscosity of metallic liquids. Sci. Rep. 5, 13837 (2015).

    Article  CAS  Google Scholar 

  29. A.P. Sokolov, A. Kisliuk, D. Quitmann, A. Kudlik, and E. Rossler: The dynamics of strong and fragile glass formers: Vibrational and relaxation contributions. J. Non-Cryst. Solids 172–174, 138 (1994).

    Article  Google Scholar 

  30. H. Vogel: The temperature dependence law of the viscosity of fluids. Z. Phys. 22, 645 (1921).

    CAS  Google Scholar 

  31. G.S. Fulcher: Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339 (1925).

    Article  CAS  Google Scholar 

  32. G. Tammann and W.Z. Hesse: The temperature dependence of viscosity of undercooled liquids. Anorg. Allgem. Chem. 156, 245 (1926).

    Article  CAS  Google Scholar 

  33. R. Richert and C.A. Angell: Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configurational entropy. J. Chem. Phys. 108, 9016 (1998).

    Article  CAS  Google Scholar 

  34. T. Hecksher, A.I. Nielsen, N.B. Olsen, and J.C. Dyre: Little evidence for dynamic divergences in ultraviscous molecular liquids. Nat. Phys. 4, 737 (2008).

    Article  CAS  Google Scholar 

  35. J.C. Mauro, Y. Yueb, A.J. Ellisona, P.K. Gupta, and D.C. Allan: Viscosity of glass-forming liquids. Proc. Natl. Acad. Sci. U. S. A. 24, 19780 (2009).

    Article  Google Scholar 

  36. J.H. Gibbs: Nature of the glass transition in polymers. J. Chem. Phys. 25, 185 (1956).

    Article  CAS  Google Scholar 

  37. G. Adam and J.H. Gibbs: On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965).

    Article  CAS  Google Scholar 

  38. M. Goldstein: Viscous liquids and the glass transition. IV. Thermodynamic equations and the transition. J. Phys. Chem. 77, 667 (1973).

    Article  CAS  Google Scholar 

  39. G.P. Johari: An equilibrium supercooled liquid’s entropy and enthalpy in the Kauzmann and the third law extrapolations, and a proposed experimental resolution. J. Chem. Phys. 113, 751 (2000).

    Article  CAS  Google Scholar 

  40. G.P. Johari: The entropy loss on supercooling a liquid and anharmonic contributions. J. Chem. Phys. 116, 2043 (2002).

    Article  CAS  Google Scholar 

  41. K. Ito, C.T. Moynihan, and C.A. Angell: Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492 (1999).

    Article  CAS  Google Scholar 

  42. W. Kauzmann: The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219 (1948).

    Article  CAS  Google Scholar 

  43. H. Tanaka: Relation between thermodynamics and kinetics of glass-forming liquids. Phys. Rev. Lett. 90, 055701 (2003).

    Article  CAS  Google Scholar 

  44. H. Tanaka: Possible resolution of the Kauzmann paradox in supercooled liquids. Phys. Rev. E 68, 011505 (2003).

    Article  CAS  Google Scholar 

  45. F.H. Stillinger, P.G. Debenedetti, and T.M. Truskett: The Kauzmann paradox revisited. J. Phys. Chem. B 105, 11809 (2001).

    Article  CAS  Google Scholar 

  46. L-M. Wang, V. Velikov, and C.A. Angell: Direct determination of kinetic fragility indices of glass forming liquids by differential scanning calorimetry: Kinetic versus thermodynamic fragilities. J. Chem. Phys. 117, 10184 (2002).

    Article  CAS  Google Scholar 

  47. D. Huang and G.B. McKenna: New insights into the fragility dilemma in liquids. J. Chem. Phys. 111, 5621 (2001).

    Article  CAS  Google Scholar 

  48. L-M. Wang, C.A. Angell, and R. Richert: Fragility and thermodynamics in nonpolymeric glass-forming liquids. J. Chem. Phys. 125, 074505 (2006).

    Article  CAS  Google Scholar 

  49. X. Xia and P.G. Wolynes: Fragilities of liquids predicted from the random first order transition theory of glasses. Proc. Natl. Acad. Sci. U. S. A. 97, 2990 (2000).

    Article  CAS  Google Scholar 

  50. V.N. Novikov and A.P. Sokolov: Poisson’s ratio and the fragility of glass-forming liquids. Nature 431, 961 (2004).

    Article  CAS  Google Scholar 

  51. I. Egry, G. Lohofer, I. Seyhan, S. Schneider, and B. Feuerbacher: Viscosity of eutectic Pd78Cu6Si16 measured by the oscillating drop technique in microgravity. Appl. Phys. Lett. 73, 462 (1998).

    Article  CAS  Google Scholar 

  52. S. Mukherjee, J. Schroers, Z. Zhou, W.L. Johnson, and W-K. Rhim: Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability. Acta Mater. 52, 3689 (2004).

    Article  CAS  Google Scholar 

  53. G.J. Fan, M. Freels, H. Choo, P.K. Liaw, J.J.Z. Li, W-K. Rhim, W.L. Johnson, P. Yu, and W.H. Wang: Thermophysical and elastic properties of Cu50Zr50 and (Cu50Zr50)95Al5 bulk-metallic-glass-forming alloys. Appl. Phys. Lett. 89, 241917 (2006).

    Article  CAS  Google Scholar 

  54. D. Holland-Moritz, S. Stüber, H. Hartmann, T. Unruh, T. Hansen, and A. Meyer: Structure and dynamics of liquid Ni36Zr64 studied by neutron scattering. Phys. Rev. B 79, 064204 (2009).

    Article  CAS  Google Scholar 

  55. J. Brillo, A.I. Pommrich, and A. Meyer: Relation between self-diffusion and viscosity in dense liquids: New experimental results from electrostatic levitation. Phys. Rev. Lett. 107, 165902 (2011).

    Article  CAS  Google Scholar 

  56. C.C. Yuan, F. Yang, F. Kargl, D. Holland-Moritz, G.G. Simeoni, and A. Meyer: Atomic dynamics in Zr–(Co,Ni)–Al metallic glass-forming liquids. Phys. Rev. B 91, 214203 (2015).

    Article  CAS  Google Scholar 

  57. W-K. Rhim, K. Ohsaka, P-F. Paradis, and R.E. Spjut: Noncontact technique for measuring surface tension and viscosity of molten materials using high temperature electrostatic levitation. Rev. Sci. Instrum. 70, 2796 (1999).

    Article  CAS  Google Scholar 

  58. A.K. Gangopadhyay, C.E. Pueblo, M.L. Johnson, R. Dai, R. Aschcraft, D. Van Hoesen, M. Sellers, and K.F. Kelton: Connection of fragility of metallic liquids with cohesive energy and high temperature structural evolution. J. Chem. Phys. 146, 154506 (2017).

    Article  CAS  Google Scholar 

  59. A. Sipp, Y. Bottinga, and P. Richet: New viscosity data for 3D network liquids and new correlations between old parameters. J. Non-Cryst. Solids 288, 166 (2001).

    Article  CAS  Google Scholar 

  60. N.B. Weingartner, C. Pueblo, F.S. Nogueira, K.F. Kelton, and Z. Nussinov: A phase space approach to supercooled liquids and a universal collapse of their viscosity. Front. Mater. 3, 50 (2016).

    Article  Google Scholar 

  61. K.H. Tsang and H.W. Kui: Viscosity of molten Pd82Si18 and the scaling of viscosities of glass forming systems. J. Appl. Phys. 72, 93 (1992).

    Article  CAS  Google Scholar 

  62. K. Schroeter and E. Donth: Viscosity and shear response at the dynamic glass transition of glycerol. J. Chem. Phys. 113, 9101 (2000).

    Article  Google Scholar 

  63. G.S. Parks, L.E. Barton, M.E. Spaght, and J.W. Richardson: The viscosity of undercooled liquid glucose. J. Appl. Phys. 5, 193 (1934).

    CAS  Google Scholar 

  64. W.T. Laughlin and D.R. Uhlmann: Viscous flow in simple organic fluids. J. Phys. Chem. 76, 2317 (1972).

    Article  CAS  Google Scholar 

  65. K. Russew, L. Stojanova, S. Yankova, E. Fazakas, and L.K. Varga: Thermal behavior and melt fragility number of Cu100−xZrx glassy alloys in terms of crystallization and viscous flow. J. Phys.: Conf. Ser. 144, 012094 (2009).

    Google Scholar 

  66. W.L. Johnson, J.H. Na, and M.D. Demetrieu: Quantifying the origin of metallic glass formation. Nat. Commun. 7, 10313 (2016).

    Article  CAS  Google Scholar 

  67. F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, S-H. Chen, and H.E. Stanley: Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. Proc. Natl. Acad. Sci. U. S. A. 107, 22457 (2010).

    Article  CAS  Google Scholar 

  68. B. Schmidtke, N. Petzold, R. Kahlau, and E.A. Rössler: Reorientational dynamics in molecular liquids as revealed by dynamic light scattering: From boiling point to glass transition temperature. J. Chem. Phys. 139, 084504 (2013).

    Article  CAS  Google Scholar 

  69. T. Iwashita, D.M. Nicholson, and T. Egami: Elementary excitations and crossover phenomenon in liquids. Phys. Rev. Lett. 110, 205504 (2013).

    Article  CAS  Google Scholar 

  70. Y.C. Hu, F.X. Li, M.Z. Li, H.Y. Bai, and W.H. Wang: Structural signatures evidenced in dynamic crossover phenomena in metallic glass-forming liquids. J. Appl. Phys. 119, 205108 (2016).

    Article  CAS  Google Scholar 

  71. Y. Fan, T. Iwashita, and T. Egami: Crossover from localized to cascade relaxations in metallic glasses. Phys. Rev. Lett. 115, 045501 (2015).

    Article  CAS  Google Scholar 

  72. A. Jaiswal, T. Egami, K.F. Kelton, K.S. Schweizer, and Y. Zhang: Correlation between fragility and the Arrhenius crossover phenomenon in metallic, molecular, and network liquids. Phys. Rev. Lett. 117, 205701 (2016).

    Article  Google Scholar 

  73. S. Sastry, P.G. Debenedetti, and F.H. Stillinger: Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393, 554 (1998).

    Article  CAS  Google Scholar 

  74. J.P. Garrahan and D. Chandler: Coarse-grained microscopic model of glass formers. Proc. Natl. Acad. Sci. U. S. A. 100, 9710 (2003).

    Article  CAS  Google Scholar 

  75. W. Gotze and L. Sjogren: Relaxation processes in supercooled liquids. Rep. Prog. Phys. 55, 241 (1992).

    Article  Google Scholar 

  76. Y. Xua, N.G. Petrika, R. Scott Smith, B.D. Kaya, and G.A. Kimmela: Growth rate of supercooled ice and the diffusivity of supercooled water from 126 to 262 K. Proc. Natl. Acad. Sci. U. S. A. 113, 14921 (2016).

    Article  CAS  Google Scholar 

  77. P.F. McMillan, M. Wilson, M.C. Wilding, D. Daisenberger, M. Mezouar, and G.N. Greaves: Polyamorphism and liquid–liquid phase transitions: Challenges for experiment and theory. J. Phys.: Condens. Matter 19, 415101 (2007).

    Google Scholar 

  78. C. Zhang, L. Hu, Y. Yue, and J.C. Mauro: Fragile to strong transition in metallic glass-forming liquids. J. Chem. Phys. 133, 014508 (2010).

    Article  CAS  Google Scholar 

  79. K. Georgarakis, L. Hennet, G.A. Evangelakis, J. Antonowicz, G.B. Bokas, and V. Honkimaki: Probing the structure of a liquid metal during vitrification. Acta Mater. 87, 174 (2015).

    Article  CAS  Google Scholar 

  80. M. Stolpe, I. Jonas, S. Wei, Z. Evenson, W. Hembree, F. Yang, A. Meyer, and R. Busch: Structural changes during a liquid–liquid transition in the deeply undercooled Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 bulk metallic glass forming melt. Phys. Rev. B 93, 014201 (2016).

    Article  CAS  Google Scholar 

  81. L. Li, J. Schroers, and Y. Wu: Crossover of microscopic dynamics in metallic supercooled liquid observed by NMR. Phys. Rev. Lett. 91, 265502 (2003).

    Article  CAS  Google Scholar 

  82. S. Lan, M. Blodgett, K.F. Kelton, J.L. Ma, J. Fan, and X-L. Wang: Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition. Appl. Phys. Lett. 108, 211907 (2016).

    Article  CAS  Google Scholar 

  83. J.D. Bernal: The structure of liquids. Proc. R. Soc. London, Ser. A 280, 299 (1964).

    Article  CAS  Google Scholar 

  84. D.B. Miracle: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).

    Article  CAS  Google Scholar 

  85. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 (2006).

    Article  CAS  Google Scholar 

  86. E. Ma: Turning order into disorder. Nat. Mater. 14, 547 (2015).

    Article  CAS  Google Scholar 

  87. Y.Q. Cheng, H.W. Sheng, and E. Ma: Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys. Phys. Rev. B 78, 014207 (2008).

    Article  CAS  Google Scholar 

  88. J. Ding, Y-Q. Cheng, and E. Ma: Full icosahedra dominate local order in Cu64Zr36 metallic glass and supercooled liquid. Acta Mater. 69, 343 (2014).

    Article  CAS  Google Scholar 

  89. K.F. Kelton, G.W. Lee, A.K. Gangopadhyay, R.W. Hyers, T.J. Rathz, J.R. Rogers, M.B. Robinson, and D.S. Robinson: First X-ray scattering studies on electrostatically levitated metallic liquids: Demonstrated influence of local icosahedral order on the nucleation barrier. Phys. Rev. Lett. 90, 195504 (2003).

    Article  CAS  Google Scholar 

  90. G.W. Lee, A.K. Gangopadhyay, K.F. Kelton, R.W. Hyers, T.J. Rathz, J.R. Rogers, and D.S. Robinson: Difference in icosahedral short-range order in early and late transition metal liquids. Phys. Rev. Lett. 93, 037802 (2004).

    Article  CAS  Google Scholar 

  91. G.W. Lee, A.K. Gangopadhyay, R.W. Hyers, T.J. Rathz, J.R. Rogers, D.S. Robinson, A.I. Goldman, and K.F. Kelton: Local structure of equilibrium and supercooled Ti–Zr–Ni liquids. Phys. Rev. B 77, 184102 (2008).

    Article  CAS  Google Scholar 

  92. V. Wessels, A.K. Gangopadhyay, K.K. Sahu, R.W. Hyers, S.M. Canepari, J.R. Rogers, M.J. Kramer, A.I. Goldman, D. Robinson, J.W. Lee, J.R. Morris, and K.F. Kelton: Rapid chemical and topological ordering in supercooled liquid Cu46Zr54. Phys. Rev. B 83, 094116 (2011).

    Article  CAS  Google Scholar 

  93. A.K. Gangopadhyay, M.E. Blodgett, M.L. Johnson, A.J. Vogt, N.A. Mauro, and K.F. Kelton: Thermal expansion measurements by X-ray scattering and breakdown of Ehrenfest’s relation in alloy liquids. Appl. Phys. Lett. 104, 191907 (2014).

    Article  CAS  Google Scholar 

  94. A.K. Gangopadhyay, M.E. Blodgett, M.L. Johnson, J. McKnight, V. Wessels, A.J. Vogt, N.A. Mauro, J.C. Bendert, R. Soklaski, L. Yang, and K.F. Kelton: Anomalous thermal contraction of the first coordination shell in metallic alloy liquids. J. Chem. Phys. 140, 044505 (2014).

    Article  CAS  Google Scholar 

  95. N.A. Mauro, M.L. Johnson, J.C. Bendert, and K.F. Kelton: Structural evolution in Ni–Nb and Ni–Nb–Ta liquids and glasses—A measure of liquid fragility. J. Non-Cryst. Solids 362, 237 (2013).

    Article  CAS  Google Scholar 

  96. N.A. Mauro, A.J. Vogt, M.L. Johnson, J.C. Bendert, and K.F. Kelton: Anomalous structural evolution in Cu50Zr50 glass-forming liquids. Appl. Phys. Lett. 103, 021904 (2013).

    Article  CAS  Google Scholar 

  97. N.A. Mauro, A.J. Vogt, M.L. Johnson, J.C. Bendert, R. Soklaski, L. Yang, and K.F. Kelton: Anomalous structural evolution and liquid fragility signatures in Cu–Zr and Cu–Hf liquids and glasses. Acta Mater. 61, 7411 (2013).

    Article  CAS  Google Scholar 

  98. N.A. Mauro, M. Blodgett, M.L. Johnson, A.J. Vogt, and K.F. Kelton: A structural signature of liquid fragility. Nat. Commun. 5, 4616 (2014).

    Article  CAS  Google Scholar 

  99. D.V. Louzguine-Luzgin, R. Belosludov, A.R. Yavari, K. Georgarakis, G. Vaughan, Y. Kawazoe, T. Egami, and A. Inoue: Structural basis for supercooled liquid fragility established by synchrotron-radiation method and computer simulation. J. Appl. Phys. 110, 043519 (2011).

    Article  CAS  Google Scholar 

  100. S. Wei, M. Stolpe, O. Gross, Z. Evenson, I. Gallino, W. Hembree, J. Bednarcik, J. Kruzic, and R. Busch: Linking structure to fragility in bulk metallic glass-forming liquids. Appl. Phys. Lett. 106, 181901 (2015).

    Article  CAS  Google Scholar 

  101. D. Ma, A.D. Stoica, and X-L. Wang: Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat. Mater. 8, 30 (2009).

    Article  CAS  Google Scholar 

  102. Q. Zenga, Y. Linb, Y. Liue, Z. Zenga, C.Y. Shib, B. Zhang, H. Loua, S.V. Sinogeikin, Y. Kono, C.K. Bensong, C. Park, W. Yang, W. Wang, H. Sheng, H-K. Mao, and W.L. Mao: General 2.5 power law of metallic glasses. Proc. Natl. Acad. Sci. U. S. A. 113, 1714 (2016).

    Article  CAS  Google Scholar 

  103. P. Chirawatkul, A. Zeidler, P.S. Salmon, S. Takeda, Y. Kawakita, T. Usuki, and H.E. Fischer: Structure of eutectic liquids in the Au–Si, Au–Ge, and Ag–Ge binary systems by neutron diffraction. Phys. Rev. B 83, 014203 (2011).

    Article  CAS  Google Scholar 

  104. H. Lou, X. Wang, Q. Cao, D. Zhang, J. Zhang, T. Hu, H-K. Mao, and J-Z. Jiang: Negative expansions of interatomic distances in metallic melts. Proc. Natl. Acad. Sci. U. S. A. 110, 10068 (2013).

    Article  CAS  Google Scholar 

  105. J. Ding, M. Xu, P.F. Guan, S.W. Deng, Y.Q. Cheng, and E. Ma: Temperature effects on atomic pair distribution functions of melts. J. Chem. Phys. 140, 064501 (2014).

    Article  CAS  Google Scholar 

  106. H. Poulsen, J.A. Wert, J. Neuefeind, V. Honkimaki, and M. Daymond: Measuring strain distributions in amorphous materials. Nat. Mater. 4, 33 (2005).

    Article  CAS  Google Scholar 

  107. T.C. Hufnagel and R.T. Ott: Structural aspects of elastic deformation of a metallic glass. Phys. Rev. B 73, 064204 (2006).

    Article  CAS  Google Scholar 

  108. W. Dmowski, T. Iwashita, C-P. Chuang, J. Almer, and T. Egami: Elastic heterogeneity in metallic glasses. Phys. Rev. Lett. 105, 205502 (2010).

    Article  CAS  Google Scholar 

  109. G. Baldi, M. Zanatta, E. Gilioli, V. Milman, K. Refson, B. Wehinger, B. Winkler, A. Fontana, and G. Monaco: Emergence of crystal-like atomic dynamics in glasses at the nanometer scale. Phys. Rev. Lett. 110, 185503 (2013).

    Article  CAS  Google Scholar 

  110. S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, and A.L. Greer: Rejuvenation of metallic glasses by non-affine thermal strain. Nature 524, 200 (2015).

    Article  CAS  Google Scholar 

  111. R.L. McGreevy and J.D. Wicks: X-ray, electron and neutron diffraction. RMC: Modelling neutron diffraction, X-ray diffraction and EXAFS data simultaneously for amorphous materials. J. Non-Cryst. Solids 192–193, 23 (1995).

    Google Scholar 

  112. R.L. McGreevy: Reverse Monte Carlo modelling. J. Phys.: Condens. Matter 13, R877 (2001).

    CAS  Google Scholar 

  113. Y-Q. Cheng and E. Ma: Atomic-level structure and structure-property relationship in metallic glasses. Prog. Mater. Sci. 56, 379 (2011).

    Article  CAS  Google Scholar 

  114. N. Jakse and A. Pasturel: Ab initio molecular dynamics simulations of local structure of supercooled Ni. J. Chem. Phys. 120, 6124 (2004).

    Article  CAS  Google Scholar 

  115. S.G. Hao, M.J. Kramer, C.Z. Wang, K.M. Ho, S. Nandi, A. Kreyssig, A.I. Goldman, V. Wessels, K.K. Sahu, K.F. Kelton, R.W. Hyers, S.M. Canepari, and J.R. Rogers: Experimental and ab initio structural studies of liquid Zr2Ni. Phys. Rev. B 79, 104206 (2009).

    Article  CAS  Google Scholar 

  116. Y. Zhang, M.I. Mendelev, C.Z. Wang, and K.F. Kelton: Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy. J. Chem. Phys. 145, 204505 (2016).

    Article  CAS  Google Scholar 

  117. R. Soklaski, Z. Nussinov, Z. Markow, K.F. Kelton, and L. Yang: Connectivity of icosahedral network and a dramatically growing static length scale in Cu–Zr binary metallic glasses. Phys. Rev. B 87, 184203 (2013).

    Article  CAS  Google Scholar 

  118. T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, and D.M. Herlach: Icosahedral short-range order in deeply undercooled metallic melts. Phys. Rev. Lett. 89, 075507 (2002).

    Article  CAS  Google Scholar 

  119. Y.Q. Cheng, A.J. Cao, and E. Ma: Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition. Acta Mater. 57, 3253 (2009).

    Article  CAS  Google Scholar 

  120. J. Ding, Y.Q. Cheng, and E. Ma: Correlating local structure with inhomogeneous elastic deformation in a metallic glass. Appl. Phys. Lett. 101, 121917 (2012).

    Article  CAS  Google Scholar 

  121. T. Iwashita and T. Egami: Atomic mechanism of flow in simple liquids under shear. Phys. Rev. Lett. 108, 196001 (2012).

    Article  CAS  Google Scholar 

  122. H. Eyring: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283 (1936).

    Article  CAS  Google Scholar 

  123. R. Soklaski, V. Tran, Z. Nussinov, K.F. Kelton, and L. Yang: A locally preferred structure characterizes all dynamical regimes of a supercooled liquid. Philos. Mag. 96, 1212 (2016).

    Article  CAS  Google Scholar 

  124. S. Sastry: The relationship between fragility, configurational entropy and potential energy landscape of glass-forming liquids. Nature 409, 164 (2001).

    Article  CAS  Google Scholar 

  125. A.J. Moreno, S.V. Buldyrev, E. La Nave, I. Saika-Voivod, F. Sciortino, P. Tartaglia, and E. Zaccarelli: Energy landscape of a simple model for strong liquids. Phys. Rev. Lett. 95, 157802 (2005).

    Article  CAS  Google Scholar 

  126. P.G. Debenedetti, T.M. Truskett, and C.P. Lewis: Theory of supercooled liquids and glasses: Energy landscape and statistical geometry perspectives. Adv. Chem. Eng. 28, 21 (2001).

    Article  Google Scholar 

  127. F.H. Stillinger: A topological view of supercooled liquids and glass formation. Science 267, 1935 (1995).

    Article  CAS  Google Scholar 

  128. M. Born and H.S. Green: A general kinetic theory of liquids. III. Dynamical properties. Proc. R. Soc. London, Ser. A 190, 455 (1947).

    Article  CAS  Google Scholar 

  129. D.C. Wallace: Entropy of liquid metals. J. Chem. Phys. 87, 2282 (1987).

    Article  CAS  Google Scholar 

  130. A. Baranyai and D.J. Evans: Direct entropy calculation from computer simulation of liquids. Phys. Rev. A 40, 3817 (1989).

    Article  CAS  Google Scholar 

  131. D.C. Wallace: Entropy of liquid metals. Proc. R. Soc. London, Ser. A 433, 615 (1991).

    Article  CAS  Google Scholar 

  132. M. Dzugutov: A universal scaling law for atomic diffusion in condensed matter. Nature 381, 137 (1996).

    Article  CAS  Google Scholar 

  133. A. Bartsch, K. Rätzke, A. Meyer, and F. Faupel: Dynamic arrest in multicomponent glass-forming alloys. Phys. Rev. Lett. 104, 195901 (2010).

    Article  CAS  Google Scholar 

  134. S.F. Swallen, K. Traynor, R.J. McMahon, M.D. Ediger, and T.E. Mates: Self-diffusion of supercooled tris-naphthylbenzene. J. Chem. Phys. 113, 4600 (2009).

    Article  CAS  Google Scholar 

  135. B.B. Laird and A.D.J. Haymet: Calculation of the entropy from multiparticle correlation functions. Phys. Rev. A 45, 5680 (1992).

    Article  CAS  Google Scholar 

  136. D. Coslovich: Static triplet correlations in glass-forming liquids: A molecular dynamics study. J. Chem. Phys. 138, 12A539 (2013).

    Article  CAS  Google Scholar 

  137. L. Berthier and D. Coslovich: Novel approach to numerical measurements of the configurational entropy in supercooled liquids. Proc. Natl. Acad. Sci. U. S. A. 111, 11668 (2014).

    Article  CAS  Google Scholar 

  138. I. Yokoyama and T. Arai: Correlation entropy and its relation to properties of liquid iron, cobalt, and nickel. J. Non-Cryst. Solids 293–295, 806 (2001).

    Article  Google Scholar 

  139. P-F. Paradis and W-K. Rhim: Thermophysical properties of zirconium at high temperature. J. Mater. Res. 14, 3713 (1999).

    Article  CAS  Google Scholar 

  140. R.D. Mountain and H.J. Raveché: Entropy and molecular correlation functions in open systems. II. Two and three body correlations. J. Chem. Phys. 55, 2250 (1971).

    Article  CAS  Google Scholar 

  141. F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen: Cohesion in Metals-Transition Metal Alloys (North-Holland, Amsterdam, 1988).

    Google Scholar 

  142. T. Scopigno, G. Ruocco, and F. Sette: Microscopic dynamics in liquid metals: The experimental point of view. Rev. Mod. Phys. 77, 881 (2005).

    Article  CAS  Google Scholar 

  143. F. Faupel, W. Frank, M-P. Macht, H. Mehrer, V. Naundorf, K. Raetzke, H.R. Schober, S.K. Sharma, and H. Teichler: Diffusion in metallic glasses and supercooled melts. Rev. Mod. Phys. 75, 237 (2003).

    Article  Google Scholar 

  144. L. Berthier, G. Biroli, G-P. Bouchaud, L. Cipelletti, D. El Masri, D.L. Hote, F. Ladieu, and M. Pierno: Direct experimental evidence for a growing length scale accompanying the glass transition. Science 310, 1797 (2005).

    Article  CAS  Google Scholar 

  145. J. Mittal, J.R. Errington, and T.M. Truskett: Relationship between thermodynamics and dynamics of supercooled liquids. J. Chem. Phys. 125, 076102 (2006).

    Article  CAS  Google Scholar 

  146. W-S. Xu and K.F. Freed: Influence of cohesive energy and chain stiffness on polymer glass formation. Macromolecules 47, 6990 (2014).

    Article  CAS  Google Scholar 

  147. J.C. Maxwell: On the dynamical theory of gases. Philos. Trans. R. Soc. London 157, 49 (1867).

    Article  Google Scholar 

  148. S.V. Nemilov: Interrelation between shear modulus and the molecular parameters of viscous flow for glass forming liquids. J. Non-Cryst. Solids 352, 2715 (2006).

    Article  CAS  Google Scholar 

  149. J.C. Dyre: Colloquium: The glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys. 78, 953 (2006).

    Article  CAS  Google Scholar 

  150. C. Kittel: Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996); p. 57.

    Google Scholar 

  151. J.C. Slater: Compressibility of the alkali halides. Phys. Rev. 23, 488 (1924).

    Article  CAS  Google Scholar 

  152. C.H. Bennett, D.E. Polk, and D. Turnbull: Role of composition in metallic glass formation. Acta Metall. 19, 1295 (1971).

    Article  CAS  Google Scholar 

  153. P. Bordat, F. Affouard, M. Descamps, and K.L. Ngai: Does the interaction potential determine both the fragility of a liquid and the vibrational properties of its glassy state? Phys. Rev. Lett. 93, 105502 (2004).

    Article  CAS  Google Scholar 

  154. S. Sengupta, F. Vasconcelos, F. Affouard, and S. Sastry: Dependence of the fragility of a glass former on the softness of interparticle interactions. J. Chem. Phys. 135, 194503 (2011).

    Article  CAS  Google Scholar 

  155. Z. Shi, P.G. Debenedetti, F.H. Stillinger, and P. Ginart: Structure, dynamics, and thermodynamics of a family of potentials with tunable softness. J. Chem. Phys. 135, 084513 (2011).

    Article  CAS  Google Scholar 

  156. C. De Michele, F. Sciortino, and A. Coniglio: Scaling in soft spheres: Fragility invariance on the repulsive potential softness. J. Phys.: Condens. Matter 16, L489 (2004).

    Google Scholar 

  157. J. Mattsson, H.M. Wyss, A. Fernandez-Nieves, K. Miyazaki, Z. Hu, D.R. Reichman, and D.A. Weitz: Soft colloids make strong glasses. Nature 462, 83 (2009).

    Article  CAS  Google Scholar 

  158. R. Casalini: The fragility of liquids and colloids and its relation to the softness of the potential. J. Chem. Phys. 137, 204904 (2012).

    Article  CAS  Google Scholar 

  159. R. Casalini and C.M. Roland: Thermodynamical scaling of the glass transition dynamics. Phys. Rev. E 69, 062501 (2004).

    Article  CAS  Google Scholar 

  160. R. Casalini and C.M. Roland: Why liquids are fragile. Phys. Rev. E 72, 031503 (2005).

    Article  CAS  Google Scholar 

  161. D.N. Voylov, P.J. Griffin, B. Mercado, J.K. Keum, M. Nakanishi, V.N. Novikov, and A.P. Sokolov: Correlation between temperature variations of static and dynamic properties in glass-forming liquids. Phys. Rev. E 94, 060603(R) (2016).

    Article  Google Scholar 

  162. R. Dai and R. Ashcraft: Private communication.

  163. S. Wei, Z. Evenson, I. Gallino, and R. Busch: The impact of fragility on the calorimetric glass transition in bulk metallic glasses. Intermetal 55, 138 (2014).

    Article  CAS  Google Scholar 

  164. Z. Evenson, I. Gallino, and R. Busch: The effect of cooling rates on the apparent fragility of Zr-based bulk metallic glasses. J. Appl. Phys. 107, 123529 (2010).

    Article  CAS  Google Scholar 

  165. I-R. Lu, G. Wilde, G.P. Goerler, and R. Willnecker: Thermodynamic properties of Pd-based glass-forming alloys. J. Non-Cryst. Solids 250–252, 577 (1999).

    Article  Google Scholar 

  166. G. Wilde, G.P. Goerler, R. Willnecker, and H-J. Fecht: Calorimetric, thermomechanical, and rheological characterizations of bulk glass-forming Pd40Ni40P20. J. Appl. Phys. 87, 1141 (2000).

    Article  CAS  Google Scholar 

  167. G.J. Fan, E.J. Lavernia, R.K. Wunderlich, and H-J. Fecht: The relationship between kinetic and thermodynamic fragilities in metallic glassforming liquids. Philos. Mag. 84, 2471 (2004).

    Article  CAS  Google Scholar 

  168. G.D. Fontana and L. Battezzati: Thermodynamic and dynamic fragility in metallic glass-formers. Acta Mater. 61, 2260 (2013).

    Article  CAS  Google Scholar 

  169. J. Ding, Y-Q. Cheng, H. Sheng, and E. Ma: Short-range structural signature of excess specific heat and fragility of metallic-glass-forming supercooled liquids. Phys. Rev. B 85, 060201(R) (2012).

    Article  CAS  Google Scholar 

  170. J. Ding, Y-Q. Cheng, and E. Ma: Charge-transfer-enhanced prism-type local order in amorphous Mg65Cu25Y10: Short-to-medium-range structural evolution underlying liquid fragility and heat capacity. Acta Mater. 61, 3130 (2013).

    Article  CAS  Google Scholar 

  171. J. Krausser, K.H. Samwer, and A. Zaccone: Interatomic repulsion softness directly controls the fragility of supercooled metallic melts. Proc. Natl. Acad. Sci. U. S. A. 112, 13762 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work would not have been possible without the valuable contributions of many past and present students and collaborators. We gratefully acknowledge the painstaking work of the present students, Robert Ashcraft, Rongrong Dai, Daniel Van-Hoesen, and Mark Sellers. Among the past students, many significant contributions were made by Drs. Chris Pueblo, Mark Johnson, Matthew Blodgett, Adam Vogt, James Bendert, Nicolas Mauro, Victor Wessells, Tae-ho Kim, and Geun Woo Lee. The collaborative team of Drs. Nick Weingartner and Ryan Sokolaski and Professors Lee Yang, Zohar Nussinov, Minhua Suen and Takeshi Egami has made many important contributions in MD and theoretical studies that have improved our understanding. Drs. Doug Robinson, Jan Rogers, and Professor Robert Hyers have provided technical and logistical support for the ESL and synchrotron studies. The work was partially supported by NASA under Grants Nos. NNX10AU19G and NNX16AB52G and the NSF under Grant Nos. DMR 15-06553 and DMR 12-06707. Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Science, Office of Science, under Contract No. DE-AC02-06CH11357. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or of NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Gangopadhyay.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangopadhyay, A.K., Kelton, K.F. Recent progress in understanding high temperature dynamical properties and fragility in metallic liquids, and their connection with atomic structure. Journal of Materials Research 32, 2638–2657 (2017). https://doi.org/10.1557/jmr.2017.253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.253

Navigation