Skip to main content

Advertisement

Log in

Quantitative intravoxel analysis of microCT-scanned resorbing ceramic biomaterials–Perspectives for computer-aided biomaterial design

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Driving the field of micro computed tomography toward more quantitative, rather than qualitative, approaches, we here present a new evaluation method, which uses the unique linear relationship between gray values and x-ray attenuation coefficients, together with the energy-dependence of the latter, to identify (i) the average x-ray energy used in the CT device, (ii) the x-ray attenuation coefficients, and (iii), via the x-ray attenuation average rule, the intravoxel composition, i.e., the microporosity, which, amongst others, governs the voxel-specific mechanical properties, such as stiffness and strength. The method is realized for six 3D tricalcium phosphate scaffolds, seeded with pre-osteoblastic cells and differentiated for 3, 6, and 8 weeks, respectively. The corresponding voxel-specific microporosities turn out to increase during the culturing period (resulting in reduced elastic properties, as determined from micromechanical considerations), while the overall macroporosity remains constant. The new methods are expected to further foster the development of a rationally based and computer-aided design of biomaterials and tissue engineering scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. S.T. Ho and D.W. Hutmacher: A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 27(8), 1362 (2006).

    CAS  Google Scholar 

  2. C. Renghini, V. Komlev, F. Fiori, E. Verné, F. Baino, and C. Vitale-Brovarone: Micro-CT studies on a 3D bioactive glass-ceramic scaffolds for bone regeneration. Acta Biomater. 5(4), 1328 (2009).

    CAS  Google Scholar 

  3. O. Gauthier, R. Müller, D. von Stechow, B. Lamy, P. Weiss, J-M. Bouler, E. Aguado, and G. Daculsi: In vivo bone regeneration with injectable calcium phosphate biomaterial: A three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials 26(27), 5444 (2005).

    CAS  Google Scholar 

  4. R. Cedola, A. Giuliani, A. Komlev, V. Lagomarsino, S. Mastrogiacomo, M. Peyrin, F. Rustichelli, and F. Cancedda: Bulk and interface investigations of scaffolds and tissue-engineered bones by x-ray microtomography and x-ray microdiffraction. Biomaterials 28(15), 2505 (2007).

    Google Scholar 

  5. A.C. Jones, C.H. Arns, A.P. Sheppard, D.W. Hutmacher, B.K. Milthorpe, and M.A. Knackstedt: Assessment of bone ingrowth into porous biomaterials using micro-CT. Biomaterials 28(15), 2491 (2007).

    CAS  Google Scholar 

  6. S.V.N. Jaecques, H. Van Oosterwyck, L. Muraru, T. Van Cleynenbreugel, E. De Smet, M. Wevers, I. Naert, and J. Vander Sloten: Individualised, micro CT-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone. Biomaterials 25(9), 1683 (2004).

    CAS  Google Scholar 

  7. S. Scheiner, R. Sinibaldi, B. Pichler, V. Komlev, C. Renghini, C. Vitale-Brovarone, F. Rustichelli, and C. Hellmich: Micromechanics of bone tissue-engineering scaffolds, based on resolution error-cleared computer tomography. Biomaterials 30(12), 2411 (2009).

    CAS  Google Scholar 

  8. S. Truscello, G. Kerckhofs, S. Van Bael, G. Pyka, J. Schrooten, and H. Van Oosterwyck: Prediction of permeability of regular scaffolds for skeletal tissue engineering: A combined computational and experimental study. Acta Biomater. 8(4), 1648 (2012).

    CAS  Google Scholar 

  9. M.R. Dias, P.R. Fernandes, J.M. Guedes, and S.J. Hollister: Permeability analysis of scaffolds for bone tissue engineering. J. Biomech. 45(6), 938 (2012).

    CAS  Google Scholar 

  10. C. Sandino, S. Checa, P.J. Prendergast, and D. Lacroix: Simulation of angiogenesis and cell differentiation in a CaP scaffold subjected to compressive strains using a lattice modeling approach. Biomaterials 31(8), 2446 (2010).

    CAS  Google Scholar 

  11. C. Sandino and D. Lacroix: A dynamical study of the mechanical stimuli and tissue differentiation within a CaP scaffold based on micro-CT finite element models. Biomech. Model. Mechanobiol. 10(4), 565 (2011).

    Google Scholar 

  12. J.H. Hubbel and S.M. Seltzer: Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest (National Institute of Standards and Technologies, July 2004). http://www.nist.gov/pml/data/xraycoef/index.cfm.

  13. S.M. Seltzer: Calculation of photon mass energy-transfer and mass energy-absorption coefficients. Radiat. Res. 136(2), 147 (1993).

    CAS  Google Scholar 

  14. J.H. Hubbel: Photon mass attenuation and energy-absorption coefficients. Int. J. Appl. Radiat. Isot. 33(11), 1269 (1982).

    Google Scholar 

  15. E.O. Crawley, W.D. Evans, and G.M. Owen: A theoretical analysis of the accuracy of single-energy CT bone measurements. Phys. Med. Biol. 33(10), 1113 (1988).

    CAS  Google Scholar 

  16. C. Hellmich, C. Kober, and B. Erdmann: Micromechanics-based conversion of CT data. Ann. Biomed. Eng. 36(1), 108 (2008).

    Google Scholar 

  17. J. Radon: Über die Bestimmung von Funktionen durch ihre Integralwere längs gewisser Mannigfaltigkeiten. [On the determination of functions from their integrals along certain manifolds]. SBLeipzig 29, 69, (1917).

    Google Scholar 

  18. G. Hounsfield: A method of an apparatus for examination of a body by radiation such as x-ray or gamma-radiation. Patent specification 1283915, The Patent Office, 1972.

  19. Medical Imaging and Technology Alliance (division of the National Electrical Manufacturers Association): DICOM PS3.3 2013-Information Object Definitions (2013).

  20. R. Cobel and W. Kingley: Effect of porosity on physical properties of alumina. J. Am. Ceram. Soc. 39(11), 377 (1956).

    Google Scholar 

  21. A. Fritsch, C. Hellmich, and P. Young: Micromechanics-derived scaling relations for poroelasticity and strength of brittle porous polycrystals. J. Appl. Mech. 80(2), 020905–1 (2013).

    Google Scholar 

  22. A. Fritsch, L. Dormieux, and C. Hellmich: Porous polycrystals built up by uniformly and axisymmetrically oriented needles: Homogenization of elastic properties. C. R. Mec. 334(3), 151 (2006).

    CAS  Google Scholar 

  23. A. Fritsch, L. Dormieux, C. Hellmich, and J. Sanahuja: Mechanical behaviour of hydroxyapatite biomaterials: An experimentally validated micromechanical model for elasticity and strength. J. Biomed. Mater. Res. A 88(1), 149 (2009).

    Google Scholar 

  24. J. Sanahuja, L. Dormieux, S. Meille, C. Hellmich, and A. Fritsch: Micromechanical explanation of elasticity and strength of gypsum: From elongated anisotropic crystals to isotropic porous polycrystals. J. Eng. Mech. 136(2), 239 (2010).

    Google Scholar 

  25. A. Fritsch, C. Hellmich, and L. Dormieux: The role of disc-type crystal shape for micromechanical predictions of elasticity and strength of hydroxyapatite biomaterials. Philos. Trans. R. Soc., A 368(1917), 1913 (2010).

    CAS  Google Scholar 

  26. M. Ali and B. Singh: The effect of porosity on the properties of glass fibre-reinforced gypsum plaster. J. Mater. Sci. 10(11), 1920 (1975).

    CAS  Google Scholar 

  27. K. Phani: Young’s modulus-porosity relation in gypsum systems. Am. Ceram. Soc. Bull. 65(12), 1584 (1986).

    CAS  Google Scholar 

  28. E. Tazawa: Effect of self stress on flexural strength of gypsum-polymer composites. Adv. Cem. Based Mater. 7(1), 1 (1998).

    CAS  Google Scholar 

  29. S. Meille: Etude du comportement mécanique du plâtre pris en relation avec sa microstructure [Study of the mechanical behaviour of gypsum with regard to its microstructure]. Ph.D. Thesis, INSA Lyon, Lyon, France (2001). (in French).

  30. M. Colak: Physical and mechanical properties of polymer-plaster composites. Mater. Lett. 60(16), 1977 (2006).

    CAS  Google Scholar 

  31. F. Craciun, C. Galassi, E. Roncari, A. Filippi, and G. Guidarelli: Electro-elastic properties of porous piezoelectric ceramics obtained by tape casting. Ferroelectrics 205, 49 (1998).

    CAS  Google Scholar 

  32. W. Pabst, E. Gregorová, G. Tichá, and E. Týnová: Effective elastic properties of alumina-zirconia composite ceramics. Part 4. Tensile modulus of porous alumina and zirconia. Ceram.-Silik. 48(4), 165 (2004).

    CAS  Google Scholar 

  33. C. Reynaud, F. Thévenot, T. Chartier, and J-L. Besson: Mechanical properties and mechanical behaviour of SiC dense-porous laminates. J. Eur. Ceram. Soc. 25(5), 589 (2005).

    CAS  Google Scholar 

  34. A. Díaz and S. Hampshire: Characterisation of porous silicon nitride materials produced with starch. J. Eur. Ceram. Soc. 24(2), 413 (2004).

    Google Scholar 

  35. W. Pabst, E. Gregorová, and G. Tichá: Elasticity of porous ceramics—A critical study of modulus-porosity relations. J. Eur. Ceram. Soc. 26(7), 1085 (2006).

    CAS  Google Scholar 

  36. L. Liang, P. Rulis, and W.Y. Ching: Mechanical properties, electronic structure and bonding of α- and β-tricalcium phosphates with surface characterization. Acta Biomater. 6(9), 3763 (2010).

    CAS  Google Scholar 

  37. M. Mastrogiacomo, V.S. Komlev, M. Hausard, F. Peyrin, F. Turquier, S. Casari, A. Cedola, F. Rustichelli, and R. Cancedda: Synchrotron radiation microtomography of bone engineered from bone marrow stromal cells. Tissue Eng. 10(11–12), 1767 (2004).

    CAS  Google Scholar 

  38. V.S. Komlev, F. Peyrin, M. Mastrogiacomo, A. Cedola, A. Papadimitropoulos, F. Rustichelli, and R. Cancedda: Kinetics of in vivo bone deposition by bone marrow stromal cells into porous calcium phosphate scaffolds: An x-ray computed microtomography study. Tissue Eng. 12(12), 3449 (2006).

    CAS  Google Scholar 

  39. M.C. von Doernberg, B. von Rechenberg, M. Bohner, S. Grünenfelder, G. Harry van Lenthe, R. Müller, B. Gasser, R. Mathys, G. Baroud, and J. Auer: In vivo behavior of calcium phosphate scaffolds with four different pore sizes. Biomaterials 27(30), 5186 (2006).

    Google Scholar 

  40. R. Cedola, A. Guiliani, A. Komlev, V. Lagomarsino, S. Mastrogiacomo, M. Peyrin, F. Rustichelli, and F. Cancedda: Bulk and interface investigations of scaffolds and tissue-engineered bones by x-ray microtomography and x-ray microdiffraction. Biomaterials 28(15), 2505 (2007).

    Google Scholar 

  41. M. Mastrogiacomo, A. Papadimitropoulos, A. Cedola, F. Peyrin, P. Giannoni, S.G. Pearce, M. Alini, C. Giannini, A. Guagliardi, and R. Cancedda: Engineering of bone using bone marrow stromal cells and a silicon-stabilized tricalcium phosphate bioceramic: Evidence for a coupling between bone formation and scaffold resorption. Biomaterials 28(7), 1376 (2007).

    CAS  Google Scholar 

  42. A.C. Jones, C.H. Arns, A.P. Sheppard, D.W. Hutmacher, B.K. Milthorpe, and M.A. Knackstedt: Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials 28(15), 2491 (2007).

    CAS  Google Scholar 

  43. V.S. Komlev, M. Mastrogiacomo, R.C. Pereira, F. Peyrin, F. Rustichelli, and R. Cancedda: Biodegradation of porous calcium phosphate scaffolds in an ectopic bone formation model studied by x-ray computed microtomography. Eur. Cell Mater. 19, 136 (2010).

    CAS  Google Scholar 

  44. S.K. Lan Levengood, S.J. Polak, M.J. Poellmann, D.J. Hoelzle, A.J. Maki, S.G. Clark, M.B. Wheeler, and A.J. Wagoner Johnson: The effect of BMP-2 on micro-and macroscale osteointegration of biphasic calcium phosphate scaffolds with multiscale porosity. Acta Biomater. 6(8), 3283 (2010).

    Google Scholar 

  45. A. Giuliani, A. Manescu, M. Langer, F. Rustichelli, V. Desiderio, F. Paino, A. De Rosa, L. Laino, R. d’Aquino, V. Tirino, and G. Papaccio: Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: Biological and clinical implications. Stem Cells Transl. Med. 2(4), 316 (2013).

    CAS  Google Scholar 

  46. J.Y. Rho, M.C. Hobatho, and R.B. Ashman: Relations of mechanical properties to density and CT numbers in human bone. Med. Eng. Phys. 17(5), 347 (1995).

    CAS  Google Scholar 

  47. B. Couteau, M.C. Hobatho, R. Darmana, J.C. Brignola, and J.Y. Arlaud: Finite element modelling of the vibrational behaviour of the human femur using CT-based individualized geometrical and material properties. J. Biomech. 31(4), 383 (1998).

    CAS  Google Scholar 

  48. J.H. Keyak and Y. Falkinstein: Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med. Eng. Phys. 25(9), 781 (2003).

    Google Scholar 

  49. A. Cong, O.D. Buijs, and D. Dragomir-Daescu: In situ parameter identification of optimal density-elastic modulus relationships in subject-specific finite element models of the proximal femur. Med. Eng. Phys. 33(2), 164 (2011).

    Google Scholar 

  50. C. Hellmich, F-J. Ulm, and L. Dormieux: Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? Arguments from a multiscale approach. Biomech. Model. Mechanobiol. 2(4), 219 (2004).

    Google Scholar 

  51. A. Dejaco, V.S. Komlev, J. Jaroszewicz, W. Swieszkowski, and C. Hellmich: Micro CT-based multiscale elasticity of double-porous (pre-cracked) hydroxyapatite granules for regenerative medicine. J. Biomech. 45(6), 1068 (2012).

    Google Scholar 

  52. R. Blanchard, A. Dejaco, E. Bongaers, and C. Hellmich: Intravoxel bone micromechanics for microCT-based finite element simulations. J. Biomech. 46(15), 2710 (2013).

    Google Scholar 

  53. A. Fritsch, C. Hellmich, and L. Dormieux: Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: Experimentally supported micromechanical explanation of bone strength. J. Theor. Biol. 260(2), 230 (2009).

    CAS  Google Scholar 

  54. L. Eberhardsteiner, C. Hellmich, and S. Scheiner: Layered water in crystal interfaces as source for bone viscoelasticity: Arguments from a multiscale approach. Comput. Methods Biomed. Eng. 17(1), 48 (2014).

    Google Scholar 

  55. R. Khanna, D. Katti, and K. Katti: Nanomechanics of surface modified nanohydroxyapatite particulates used in biomaterials. J. Eng. Mech. 135(5), 468 (2009).

    Google Scholar 

  56. R. Khanna, D. Katti, and K. Katti: AFM and nanoindentation studies of bone nodules on chitosan-polygalacturonic acid-hydroxyapatite nanocomposites. CMES 87(6), (2012).

  57. S. Huang, Z. Li, Z. Chen, Q. Chen, and N. Pugno: Study on the elastic-plastic behaviour of a porous hierarchical bioscaffold used for bone regeneration. Mater. Lett. 112(1), 43 (2013).

    CAS  Google Scholar 

  58. Q. Chen, F. Baino, S. Spriano, N.M. Pugno, and C. Vitale-Brovarone: Modelling of the strength-porosity relationship in glass-ceramic foam scaffolds for bone repair. J. Eur. Ceram. Soc. 34(11), 2663 (2014).

    CAS  Google Scholar 

  59. E.P. Katz and S.T. Li: Structure and function of bone collagen fibrils. J. Mol. Biol. 80(1), 1 (1973).

    CAS  Google Scholar 

  60. K. Meek, N. Fullwood, P. Cooke, G. Elliott, D. Maurice, A. Quantock, R. Wall, and C. Worthington: Synchrotron x-ray diffraction studies of the cornea, with implications for stromal hydration. Biophys. J. 60(2), 467 (1991).

    CAS  Google Scholar 

  61. M. Rougvie and R. Bear: An x-ray diffraction investigation of swelling by collagen. J. Am. Leather Chem. Assoc. 48(12), 735 (1953).

    CAS  Google Scholar 

  62. C. Morin, C. Hellmich, and P. Henits: Fibrillar structure and elasticity of hydrating collagen: A quantitative multiscale approach. J. Theor. Biol. 317, 384 (2013).

    CAS  Google Scholar 

  63. S. Lees, L.C. Bonar, and H.A. Mook: A study of dense mineralized tissue by neutron diffraction. Int. J. Biol. Macromol. 6(6), 321 (1984).

    CAS  Google Scholar 

  64. L.C. Bonar, S. Lees, and H.A. Mook: Neutron diffraction studies of collagen in fully mineralized bone. J. Mol. Biol. 181(2), 265 (1985).

    CAS  Google Scholar 

  65. C. Morin and C. Hellmich: Mineralization-driven bone tissue evolution follows from fluid-to-solid phase transformations in closed thermodynamic systems. J. Theor. Biol. 335(21), 185 (2013).

    Google Scholar 

  66. M. Azami, A. Samadikuchaksaraei, and S.A. Poursamar: Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering. Int. J. Artif. Organs 33(2), 86 (2010).

    CAS  Google Scholar 

  67. Q. Lv, M. Deng, B. Ulery, L. Nair, and C. Laurencin: Nano-ceramic composite scaffolds for bioreactor-based bone engineering. Clin. Orthop. Relat. Res. 471(8), 2422 (2013).

    Google Scholar 

  68. Q. Lv, L. Nair, and C. Laurencin: Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors. J. Biomed. Mater. Res. A 91(3), 679 (2008).

    Google Scholar 

  69. J.L. Cuy, A.B. Mann, K.J. Livi, M.F. Teaford, and T.P. Weihs: Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch. Oral Biol. 47(4), 281 (2002).

    CAS  Google Scholar 

  70. M. Miller, C. Bobko, M. Vandamme, and F-J. Ulm: Surface roughness criteria for cement paste nanoindentation. Cem. Concr. Res. 38(4), 467 (2008).

    CAS  Google Scholar 

  71. R. Khanna, K.S. Katti, and D.R. Katti: Nanomechanics of surface modified nanohydroxyapatite particulates used in biomaterials. J. Eng. Mech. 135(5), 468 (2009).

    Google Scholar 

  72. A. Malandrino, A. Fritsch, O. Lahayne, K. Kropik, H. Redl, J. Noailly, D. Lacroix, and C. Hellmich: Anisotropic tissue elasticity in human lumbar vertebra, by means of a coupled ultrasound-micromechanics approach. Mater. Lett. 78(1), 154 (2012).

    CAS  Google Scholar 

  73. J. Peelen, B. Rejda, and K. de Groot: Preparation and properties of sintered hydroxyapatite. Ceram. Int. 4(2), 71 (1978).

    CAS  Google Scholar 

  74. M.Y. Shareef, P.F. Messer, and R. van Noort: Fabrication, characterization and fracture study of a machinable hydroxyapatite ceramic. Biomaterials 14(1), 69 (1993).

    CAS  Google Scholar 

  75. R.I. Martin and P.W. Brown: Mechanical properties of hydroxyapatite formed at physiological temperature. J. Mater. Sci.: Mater. Med. 6(3), 138 (1995).

    CAS  Google Scholar 

  76. E. Charriere, S. Terrazzoni, C. Pittet, P. Mordasini, M. Dutoit, J. Lemaıtre, and P. Zysset: Mechanical characterization of brushite and hydroxyapatite cements. Biomaterials 22(21), 2937 (2001).

    CAS  Google Scholar 

  77. M. Akao, H. Aoki, and K. Kato: Mechanical properties of sintered hydroxyapatite for prosthetic applications. J. Mater. Sci. 16(3), 809 (1981).

    CAS  Google Scholar 

  78. G. De With, H.J.A. van Dijk, N. Hattu, and K. Prijs: Preparation, micro-structure and mechanical properties of dense polycrystalline hydroxyapatite. J. Mater. Sci. 16(6), 1592 (1981).

    Google Scholar 

  79. D-M. Liu: Preparation and characterisation of porous hydroxyapatite bioceramic via a slip-casting route. Ceram. Int. 24(6), 441 (1998).

    CAS  Google Scholar 

  80. I.H. Arita, D.S. Wilkinson, M.A. Mondragon, and V.M. Castano: Chemistry and sintering behaviour of thin hydroxyapatite ceramics with controlled porosity. Biomaterials 16(5), 403 (1995).

    CAS  Google Scholar 

  81. K.W. Luczynski, A. Dejaco, O. Lahayne, J. Jaroszewicz, W. Swieszkowski, and C. Hellmich: MicroCT/micromechanics-based finite element models and quasi-static unloading tests deliver consistent values for Young’s modulus of rapid-prototyped polymer-ceramic tissue engineering scaffold. Comput. Model. Eng. Sci. 87(6), 505 (2012).

    Google Scholar 

  82. T. Hara, E. Tanck, J. Homminga, and R. Huiskes: The influence of microcomputed tomography threshold variations on the assessment of structural and mechanical trabecular bone properties. Bone 31(1), 107 (2002).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful for the financial support through the ERASMUS network, and through COST Action MP1005 NAMABIO, making the cooperation between the Reykjavik University and the Vienna University of Technology (TU Wien) possible. Moreover, the Viennese researchers gratefully acknowledge the support from the European Research Council (ERC), in the course of project #257023, MICROBONE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hellmich.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czenek, A., Blanchard, R., Dejaco, A. et al. Quantitative intravoxel analysis of microCT-scanned resorbing ceramic biomaterials–Perspectives for computer-aided biomaterial design. Journal of Materials Research 29, 2757–2772 (2014). https://doi.org/10.1557/jmr.2014.326

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.326

Navigation