Skip to main content
Log in

N-doped graphene quantum dots-functionalized titanium dioxide nanofibers and their highly efficient photocurrent response

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2014

This article has been updated

Abstract

Titanium dioxide (TiO2), a widely used inorganic semiconductor owing to its superb photoelectric properties, has frequently been fabricated into composites to reduce its relatively large band gap and overcome its limited visible light absorption. In this article, a “layer-by-layer” method has been developed to prepare the composite structure of nitrogen (N)-doped graphene quantum dots (GQDs)-sensitized TiO2 nanofibers. The as-prepared structure shows considerable luminescence and exhibits excellent photoelectric properties. Various factors including the crystalline phase of TiO2, amount of N in GQDs, and irradiation wavelength were investigated to find the optimal conditions for enhanced photoelectric activity. It is demonstrated that the combination of highest N amount GQDs with TiO2 nanofibers of mixed phases (750 °C-sintered TiO2 nanofibers) possess the best photoelectric properties. The enhancement of properties using TiO2 nanofibers with mixed phases mainly contributes to the transfer of electrons between conduction bands of different phases in TiO2 and the distinctive photoluminescence (PL) property of N-GQDs. Furthermore, this enhancement can be achieved in most areas of the visible light range. The general mechanism of the electron generation and transfer of the structure is based on the normal PL and upconversion PL property of N-GQDs which serve as the sensitizer. We consider it a feasible method to improve the photoelectric conversion efficiency in photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

SCHEME 1
SCHEME 2
FIG. 1
SCHEME 3
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

Change history

References

  1. Ç.Ö. Girit, J.C. Meyer, R. Erni, M.D. Rossell, C. Kisielowski, L. Yang, C-H. Park, M. Crommie, M.L. Cohen, and S.G. Louie: Graphene at the edge: Stability and dynamics. Science 323, 1705–1708 (2009).

    CAS  Google Scholar 

  2. X. Yan, X. Cui, B. Li, and L.S. Li: Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 10, 1869–1873 (2010).

    CAS  Google Scholar 

  3. S. Zhuo, M. Shao, and S-T. Lee: Upconversion and downconversion fluorescent graphene quantum dots: Ultrasonic preparation and photocatalysis. ACS Nano 6, 1059–1064 (2012).

    CAS  Google Scholar 

  4. J. Shen, Y. Zhu, X. Yang, and C. Li: Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 3686–3699 (2012).

    CAS  Google Scholar 

  5. L. Ponomarenko, F. Schedin, M. Katsnelson, R. Yang, E. Hill, K. Novoselov, and A. Geim: Chaotic Dirac billiard in graphene quantum dots. Science 320, 356–358 (2008).

    CAS  Google Scholar 

  6. S.N. Baker and G.A. Baker: Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 49, 6726–6744 (2010).

    CAS  Google Scholar 

  7. S-T. Yang, L. Cao, P.G. Luo, F. Lu, X. Wang, H. Wang, M.J. Meziani, Y. Liu, G. Qi, and Y-P. Sun: Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 131, 11308–11309 (2009).

    CAS  Google Scholar 

  8. Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu: An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 23, 776–780 (2011).

    Google Scholar 

  9. A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, and P.M. Ajayan: Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4, 6337–6342 (2010).

    CAS  Google Scholar 

  10. H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, and J.W. Choi: Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11, 2472–2477 (2011).

    CAS  Google Scholar 

  11. Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, and L. Qu: Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 134, 15–18 (2012).

    CAS  Google Scholar 

  12. V.B. Parambhath, R. Nagar, and S. Ramaprabhu: Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene. Langmuir 28, 7826–7833 (2012).

    CAS  Google Scholar 

  13. M. Li, W. Wu, W. Ren, H-M. Cheng, N. Tang, W. Zhong, and Y. Du: Synthesis and upconversion luminescence of N-doped graphene quantum dots. Appl. Phys. Lett. 101, 103107 (2012).

    Google Scholar 

  14. R. Liu, D. Wu, X. Feng, and K. Müllen: Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc. 133, 15221–15223 (2011).

    CAS  Google Scholar 

  15. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003).

    CAS  Google Scholar 

  16. R. Long, N.J. English, and O.V. Prezhdo: Photoinduced charge separation across the graphene-TiO2 interface is faster than energy losses: A time-domain ab initio analysis. J. Am. Chem. Soc. 134, 14238–14248 (2012).

    CAS  Google Scholar 

  17. A. Du, Y.H. Ng, N.J. Bell, Z. Zhu, R. Amal, and S.C. Smith: Hybrid graphene/titania nanocomposite: Interface charge transfer, hole doping, and sensitization for visible light response. J. Phys. Chem. Lett. 2, 894–899 (2011).

    CAS  Google Scholar 

  18. C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, and Y. Feng: Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 4, 6425–6432 (2010).

    CAS  Google Scholar 

  19. Y. Dai, Y. Sun, J. Yao, D. Ling, Y. Wang, H. Long, X. Wang, B. Lin, T.H. Zeng, and Y. Sun: Graphene-wrapped TiO2 nanofibers with effective interfacial coupling as ultrafast electron transfer bridges in novel photoanodes. J. Mater. Chem. A 2, 1060–1067 (2014).

    CAS  Google Scholar 

  20. W. Shockley and H.J. Queisser: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    CAS  Google Scholar 

  21. K.J. Williams, C.A. Nelson, X. Yan, L-S. Li, and X. Zhu: Hot electron injection from graphene quantum dots to TiO2. ACS Nano 7, 1388–1394 (2013).

    CAS  Google Scholar 

  22. Y. Dai, Y. Jing, J. Zeng, Q. Qi, C. Wang, D. Goldfeld, C. Xu, Y. Zheng, and Y. Sun: Nanocables composed of anatase nanofibers wrapped in UV-light reduced graphene oxide and their enhancement of photoinduced electron transfer in photoanodes. J. Mater. Chem. 21, 18174–18179 (2011).

    CAS  Google Scholar 

  23. Y. Dai, H. Long, X. Wang, Y. Wang, Q. Gu, W. Jiang, Y. Wang, C. Li, T.H. Zeng, and Y. Sun: Versatile graphene quantum dots with tunable nitrogen doping. Part. Part. Syst. Charact. 31, 597–604 (2013).

    Google Scholar 

  24. W.S. Hummers, Jr. and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    CAS  Google Scholar 

  25. W. Zhang, M. Zhang, Z. Yin, and Q. Chen: Photoluminescence in anatase titanium dioxide nanocrystals. Appl. Phys. B 70, 261–265 (2000).

    CAS  Google Scholar 

  26. Z. Lide and C-M. Mo: Luminescence in nanostructured materials. Nanostruct. Mater. 6, 831–834 (1995).

    Google Scholar 

  27. J. Shen, B. Yan, M. Shi, H. Ma, N. Li, and M. Ye: One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J. Mater. Chem. 21, 3415–3421 (2011).

    CAS  Google Scholar 

  28. D. Luo, G. Zhang, J. Liu, and X. Sun: Evaluation criteria for reduced graphene oxide. J. Phys. Chem. C 115, 11327–11335 (2011).

    CAS  Google Scholar 

  29. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’Homme, I.A. Aksay, and R. Car: Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36–41 (2008).

    CAS  Google Scholar 

  30. Y-H. Zhang, C.K. Chan, J.F. Porter, and W. Guo: Micro-Raman spectroscopic characterization of nanosized TiO2 powders prepared by vapor hydrolysis. J. Mater. Res. 13, 2602–2609 (1998).

    CAS  Google Scholar 

  31. Q. Yang, C. Xie, Z. Xu, Z. Gao, and Y. Du: Synthesis of highly active sulfate-promoted rutile titania nanoparticles with a response to visible light. J. Phys. Chem. B 109, 5554–5560 (2005).

    CAS  Google Scholar 

  32. L. Jing, S. Li, S. Song, L. Xue, and H. Fu: Investigation on the electron transfer between anatase and rutile in nano-sized TiO2 by means of surface photovoltage technique and its effects on the photocatalytic activity. Sol. Energy Mater. Sol. Cells 92, 1030–1036 (2008).

    CAS  Google Scholar 

  33. Y. Zhang, G. Li, Y. Jin, Y. Zhang, J. Zhang, and L. Zhang: Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chem. Phys. Lett. 365, 300–304 (2002).

    CAS  Google Scholar 

  34. M.S.P. Francisco and V.R. Mastelaro: Inhibition of the anatase-rutile phase transformation with addition of CeO2 to CuO-TiO2 system: Raman spectroscopy, x-ray diffraction, and textural studies. Chem. Mater. 14, 2514–2518 (2002).

    CAS  Google Scholar 

  35. D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, and I.P. Parkin: Band alignment of rutile and anatase TiO2. Nat. Mater. 12, 798–801 (2013).

    CAS  Google Scholar 

  36. S. Morales-Torres, L.M. Pastrana-Martinez, J.L. Figueiredo, J.L. Faria, and A.M. Silva: Design of graphene-based TiO2 photocatalysts–A review. Environ. Sci. Pollut. Res. Int. 19, 3676–3687 (2012).

    CAS  Google Scholar 

  37. Q. Zhang, Y. He, X. Chen, D. Hu, L. Li, T. Yin, and L. Ji: Structure and photocatalytic properties of TiO2-graphene oxide intercalated composite. Chin. Sci. Bull. 56, 331–339 (2011).

    CAS  Google Scholar 

  38. Q. Li, S. Zhang, L. Dai, and L.S. Li: Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction. J. Am. Chem. Soc. 134, 18932–18935 (2012).

    CAS  Google Scholar 

  39. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009).

    CAS  Google Scholar 

  40. Y. Li, Z. Zhou, P. Shen, and Z. Chen: Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano 3, 1952–1958 (2009).

    CAS  Google Scholar 

  41. J. Shen, Y. Zhu, C. Chen, X. Yang, and C. Li: Facile preparation and upconversion luminescence of graphene quantum dots. Chem. Commun. 47, 2580–2582 (2011).

    CAS  Google Scholar 

  42. D. Pan, J. Zhang, Z. Li, C. Wu, X. Yan, and M. Wu: Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chem. Commun. 46, 3681–3683 (2010).

    CAS  Google Scholar 

  43. R. Hoffmann: Trimethylene and the addition of methylene to ethylene. J. Am. Chem. Soc. 90, 1475–1485 (1968).

    CAS  Google Scholar 

  44. X. Wang, W.W. Yu, J. Zhang, J. Aldana, X. Peng, and M. Xiao: Photoluminescence upconversion in colloidal CdTe quantum dots. Phys. Rev. B 68, 125318 (2003).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the National Basic Research Program (973 program, 2013CB932902), the National Natural Science Foundation of China (21201034, 21173042, 2131010200, 551103023, and 21345008), the Fundamental Research Funds for the Central Universities (No. 3207044403), the Southeast University Innovation Fund (No. 3207042401) and the Science and Technology Support Program (Industry) Project of Jiangsu Province (BE 2013118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yibai Sun or Yunqian Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ling, D., Wang, Y. et al. N-doped graphene quantum dots-functionalized titanium dioxide nanofibers and their highly efficient photocurrent response. Journal of Materials Research 29, 1408–1416 (2014). https://doi.org/10.1557/jmr.2014.152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.152

Navigation