Skip to main content
Log in

Annealing-induced crystalline structure and mechanical property changes of polypropylene random copolymer

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, the effects of annealing treatment on the crystalline structure and mechanical property changes of polypropylene random copolymer (PPR) were comparatively investigated. Wide angle x-ray diffraction and differential scanning calorimetry were used to study the crystalline structure evolution of the annealed PPR sample. The relaxation behavior of the annealed PPR sample was analyzed using dynamic mechanical analysis. The mechanical properties and the toughening mechanism were also investigated. The results showed that the crystalline structure evolution of the annealed PPR sample depended on the annealing temperature. Due to the largely increased molecular chain mobility in the amorphous region, which promoted the plastic deformation of the annealed PPR sample under the impact condition, largely enhanced impact strength was achieved at a moderate annealing temperature. Further results showed that relatively shorter annealing duration could induce the apparent changes of crystalline structure and mechanical properties of the PPR sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
TABLE I.
FIG. 3.
TABLE II.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

REFERENCES

  1. P. Maiti, M. Hikosaka, K. Yamada, A. Toda, and F. Gu: Lamellar thickening in isotactic polypropylene with high tacticity crystallized at high temperature. Macromolecules 33, 9069 (2000).

    Article  CAS  Google Scholar 

  2. A.D. Drozdov and J. deClaville Christiansen: The effect of annealing on the time-dependent behavior of isotactic polypropylene at finite strains. Polymer 43, 4745 (2002).

    Article  CAS  Google Scholar 

  3. J. Zhao, J. Qiu, Y. Niu, and Z. Wang: Evolutions of morphology and crystalline ordering upon annealing of quenched isotactic polypropylene. J. Polym. Sci. Polym. Phys. 47, 1703 (2009).

    Article  CAS  Google Scholar 

  4. C. Hedesiu, D. Demco, R. Kleppinger, G.V. Poel, W. Gijsbers, B. Blümich, K. Remerie, and V. Litvinov: Effect of temperature and annealing on the phase composition, molecular mobility, and the thickness of domains in isotactic polypropylene studied by proton solid-state NMR, SAXS, and DSC. Macromolecules 40, 3977 (2007).

    Article  CAS  Google Scholar 

  5. H. Wu, X. Li, J. Chen, L. Shao, T. Huang, Y. Shi, and Y. Wang: Reinforcement and toughening of polypropylene/organic montmorillonite nanocomposite using β-nucleating agent and annealing. Composites Part B: Eng. 44, 439 (2013).

    Article  CAS  Google Scholar 

  6. L. Han, X. Li, Y. Li, T. Huang, Y. Wang, J. Wu, and F. Xiang: Influence of annealing on microstructure and physical properties of isotactic polypropylene/calcium carbonate composites with β-phase nucleating agent. Mater. Sci. Eng., A 527, 3176 (2010).

    Article  CAS  Google Scholar 

  7. D. Ferrer-Balas, M.L. Maspoch, A. Martinez, and O. Santana: Influence of annealing on the microstructural, tensile and fracture properties of polypropylene films. Polymer 42, 1697 (2001).

    Article  CAS  Google Scholar 

  8. S. Song, J. Feng, and P. Wu: Annealing of melt-crystallized polyethylene and its influence on microstructure and mechanical properties: A comparative study on branched and linear polyethylenes. J. Polym. Sci. Polym. Phys. 49, 1347 (2011).

    Article  CAS  Google Scholar 

  9. H. Wu, X. Li, F. Xiang, T. Huang, Y. Shi, and Y. Wang: Microstructure evolution of isotactic polypropylene during annealing: Effect of poly(ethylene oxide). Chin. J. Polym. Sci. 30, 199 (2012).

    Article  CAS  Google Scholar 

  10. C. De Rosa, O. Ruiz de Ballesteros, F. Auriemma, and R. Savarese: Polymorphic transitions induced by annealing in stretched fibers of syndiotactic polypropylene. Macromolecules 38, 4791 (2005).

    Article  CAS  Google Scholar 

  11. S. Song, J. Feng, and P. Wu: Relaxation of shear-enhanced crystallization in impact-resistant polypropylene copolymer: Insight from morphological evolution upon thermal treatment. Polymer 51, 5267 (2010).

    Article  CAS  Google Scholar 

  12. H. Bai, F. Luo, T. Zhou, H. Deng, K. Wang, and Q. Fu: New insight on the annealing induced microstructural changes and their roles in the toughening of β-form polypropylene. Polymer 52, 2351 (2011).

    Article  CAS  Google Scholar 

  13. J.W. Chen, J. Dai, J.H. Yang, N. Zhang, T. Huang, and Y. Wang: Enhancing chain segments mobility to improve the fracture toughness of polypropylene. Chin. J. Polym. Sci. 31, 232 (2013).

    Article  CAS  Google Scholar 

  14. H. Wu, X. Li, Y. Wang, J. Wu, T. Huang, and Y. Wang: Fracture behaviors of isotactic polypropylene/poly(ethylene oxide) blends: Effect of annealing. Mater. Sci. Eng., A 528, 8013 (2011).

    Article  CAS  Google Scholar 

  15. Y. Lin, H. Chen, C.M. Chan, and J. Wu: High impact toughness polypropylene/CaCO3 nanocomposites and the toughening mechanism. Macromolecules 41, 9204 (2008).

    Article  CAS  Google Scholar 

  16. Y. Lin, H. Chen, C.M. Chan, and J. Wu: Annealing-induced high impact toughness of polypropylene/CaCO3 nanocomposites. J. Appl. Polym. Sci. 124, 77 (2012).

    Article  CAS  Google Scholar 

  17. B. Na, Z. Li, R. Lv, and S. Zou: Annealing-induced structural rearrangement and its toughening effect in injection-molded isotactic polypropylene. Polym. Eng. Sci. 52, 893 (2012).

    Article  CAS  Google Scholar 

  18. Q.G. Li, B.H. Xie, W. Yang, Z.M. Li, W.Q. Zhang, and M.B. Yang: Effect of annealing on fracture behavior of poly(propylene-block-ethylene) using essential work of fracture analysis. J. Appl. Polym. Sci. 103, 3438 (2007).

    Article  CAS  Google Scholar 

  19. H. Bai, Y. Wang, Z. Zhang, L. Han, Y. Li, L. Liu, Z. Zhou, and Y. Men: Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-phase nucleating agent. Macromolecules 42, 6647 (2009).

    Article  CAS  Google Scholar 

  20. A.D. Drozdov: The effect of annealing on the elastoplastic response of isotactic polypropylene. Eur. Polym. J. 39, 21 (2003).

    Article  CAS  Google Scholar 

  21. A.D. Drozdov and J.D. Christiansen: The effect of annealing on the nonlinear viscoelastic response of isotactic polypropylene. Polym. Eng. Sci. 43, 946 (2003).

    Article  CAS  Google Scholar 

  22. P. Frontini and A. Fave: The effect of annealing temperature on the fracture performance of isotactic polypropylene. J. Mater. Sci. 30, 2446 (1995).

    Article  CAS  Google Scholar 

  23. X. Li, H. Wu, L. Han, T. Huang, Y. Wang, H. Bai, and Z. Zhou: Annealing induced microstructure and fracture resistance changes in isotactic polypropylene/ethylene-octene copolymer blends with and without β-phase nucleating agent. J. Polym. Sci. Polym. Phys. 48, 2108 (2010).

    Article  CAS  Google Scholar 

  24. J. Tang, W. Tang, H. Yuan, and R. Jin: Super-toughed polymer blends derived from polypropylene random copolymer and ethylene/styrene interpolymer. J. Appl. Polym. Sci. 115, 190 (2010).

    Article  CAS  Google Scholar 

  25. H. Palza, J.M. López-Majada, R. Quijada, J.M. Pereña, R. Benaventa, E. Pérez, and M.L. Cerrada: Comonomer length influence on the structure and mechanical response of metallocenic polypropyleneic materials. Macromol. Chem. Phys. 209, 2259 (2008).

    Article  CAS  Google Scholar 

  26. C. De Rosa, S. Dello Iacono, F. Auriemma, E. Ciaccia, and L. Resconi: Physical aging of single wall carbon nanotube polymer nanocomposites: Effect of functionalization of the nanotube on the enthalpy relaxation. Macromolecules 39, 6098 (2006).

    Article  CAS  Google Scholar 

  27. C. De Rosa, F. Auriemma, O.R.D. Ballesteros, D.D. Luca, and L. Resconi: The double role of comonomers on the crystallization behavior of isotactic polypropylene: Propylene-hexene copolymers. Macromolecules 41, 2172 (2008).

    Article  CAS  Google Scholar 

  28. C. De Rosa, F. Auriemma, O. Ruiz de Ballesteros, S. Dello Iacono, D. De Luca, and L. Resconi: Stress-induced polymorphic transformations and mechanical properties of isotactic propylene-hexene copolymers. Cryst. Growth Des. 9, 165 (2009).

    Article  CAS  Google Scholar 

  29. C. De Rosa, F. Auriemma, R. Di Girolamo, L. Romano, and M.R. De Luca: New mesophase of isotactic polypropylene in copolymers of propylene with long branched comonomers. Macromolecules 43, 8559 (2010).

    Article  CAS  Google Scholar 

  30. H.S. Bu and S.Z.D. Cheng, and B. Wunderlich: Addendum to the thermal properties of polypropylene. Makromol. Chem. Rapid Commun. 9, 75 (1988).

    Article  CAS  Google Scholar 

  31. D. Morrow and B. Newman: Crystallization of low-molecular-weight polypropylene fractions. J. Appl. Phys. 39, 4944 (1968).

    Article  CAS  Google Scholar 

  32. E. Addink and J. Beintema: Polymorphism of crystalline polypropylene. Polymer 2, 185 (1961).

    Article  CAS  Google Scholar 

  33. I. Hosier, R. Alamo, P. Esteso, J. Isasi, and L. Mandelkern: Formation of the α and γ polymorphs in random metallocene-propylene copolymers: Effect of concentration and type of comonomer. Macromolecules 36, 5623 (2003).

    Article  CAS  Google Scholar 

  34. C. De Rosa, F. Auriemma, A. Di Capua, L. Resconi, S. Guidotti, I. Camurati, I.E. Nifantev, and I.P. Laishevtsev: Structure-property correlations in polypropylene from metallocene catalysts: Stereodefective, regioregular isotactic polypropylene. J. Am. Chem. Soc. 126, 17040 (2004).

    Article  CAS  Google Scholar 

  35. C. De Rosa and F. Auriemma: Structural-mechanical phase diagram of isotactic polypropylene. J. Am. Chem. Soc. 128, 11024 (2006).

    Article  CAS  Google Scholar 

  36. C. De Rosa, F. Auriemma, and T. Circelli: Crystallization of the α and γ forms of isotactic polypropylene as a tool to test the degree of segregation of defects in the polymer chains. Macromolecules 35, 3622 (2002).

    Article  CAS  Google Scholar 

  37. F. Auriemma and C.D. Rosa: Crystallization of metallocene-made isotactic polypropylene: Disordered modifications intermediate between the α and γ forms. Macromolecules 35, 9057 (2002).

    Article  CAS  Google Scholar 

  38. C. De Rosa, F. Auriemma, C. Spera, G. Talarico, and O. Tarallo: Comparison between polymorphic behaviors of Ziegler-Natta and metallocene-made isotactic polypropylene: The role of the distribution of defects in the polymer chains. Macromolecules 37, 1441 (2004).

    Article  CAS  Google Scholar 

  39. C. De Rosa, F. Auriemma, O. Ruiz de Ballesteros, L. Resconi, and I. Camurati: Tailoring the physical properties of isotactic polypropylene through incorporation of comonomers and the precise control of stereo- and regioregularity by metallocene catalysts. Chem. Mater. 19, 5122 (2007).

    Article  CAS  Google Scholar 

  40. C. De Rosa, F. Auriemma, O. Ruiz de Ballesteros, L. Resconi, and I. Camurati: Crystallization behavior of isotactic propylene–ethylene and propylene–butene copolymers: Effect of comonomers versus stereodefects on crystallization properties of isotactic polypropylene. Macromolecules 40, 6600 (2007).

    Article  CAS  Google Scholar 

  41. A. Turner-Jones: Development of the γ-crystal form in random copolymers of propylene and their analysis by DSC and x-ray methods. Polymer 12, 487 (1971).

    Article  CAS  Google Scholar 

  42. Q. Shi, C.L. Cai, Z. Ke, L.G. Yin, Y.L. Liu, L.C. Zhu, and J.H. Yin: Effect of the nucleating agent 1,3:2,4-di(3,4-dimethylbenzylidene) sorbitol on the γ-phase content of propylene/ethylene copolymer. Eur. Polym. J. 44, 2385 (2008).

    Article  CAS  Google Scholar 

  43. Y. Zhao, A. Vaughan, S. Sutton, and S. Swingler: On the crystallization, morphology and physical properties of a clarified propylene/ethylene copolymer. Polymer 42, 6587 (2001).

    Article  CAS  Google Scholar 

  44. H. Xu and P. Cebe: Heat capacity study of isotactic polystyrene: Dual reversible crystal melting and relaxation of rigid amorphous fraction. Macromolecules 37, 2797 (2004).

    Article  CAS  Google Scholar 

  45. S.H. Lu and P. Cebe: The effects of annealing on the disappearance and creation of constrained amorphous phase. Polymer 37, 4857 (1996).

    Article  CAS  Google Scholar 

  46. M. Song: Rigid amorphous phase and low temperature melting endotherm of poly(ethylene terephthalate) studied by modulated differential scanning calorimetry. J. Appl. Polym. Sci. 81, 2779 (2001).

    Article  CAS  Google Scholar 

  47. C. Grein, K. Bernreitner, and M. Gahleitner: Potential and limits of dynamic mechanical analysis as a tool for fracture resistance evaluation of isotactic polypropylenes and their polyolefin blends. J. Appl. Polym. Sci. 93, 1854 (2004).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors express their sincere thanks to the National Natural Science Foundation of China (Grant No. 51173151), Distinguished Young Scholars Foundation of Sichuan (Grant No. 2012JQ0057), and the Fundamental Research Funds for the Central Universities (Grant Nos. SWJTU12CX010, SWJTU11CX142, and SWJTU11ZT10) for financial support. Prof. Qiang Fu (Sichuan University, People’s Republic of China) is greatly appreciated for the assistance of the DMA measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Jw., Dai, J., Yang, Jh. et al. Annealing-induced crystalline structure and mechanical property changes of polypropylene random copolymer. Journal of Materials Research 28, 3100–3108 (2013). https://doi.org/10.1557/jmr.2013.332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.332

Navigation