Skip to main content
Log in

Development of a silicon oxide-based resistive memory device using a spin-on hydrogen silsesquioxane precursor

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Resistive memory devices have the potential to replace flash technology due to their increased scalability, low voltage of operation, and compatibility with silicon semiconductor manufacturing. We report a spin-on resistive switching material, hydrogen silsesquioxane (HSQ), which is a commonly used electron beam resist. We demonstrate device scalability from 100 urn to 48 nm and show that the switching properties do not depend on the device size. Set voltages were typically <3 V, while reset voltages were <1 V when analyzing the positive unipolar switching properties of these devices. The ratio of the high resistance to the low resistance was ranged from 101 to 102, creating a distinct memory window between the memory states. Composition-depth profiling revealed that copper from the bottom electrode migrated into the HSQ films as a result of annealing. It is therefore speculated that copper may play a role in the switching properties of devices based on this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Waser, R. Dittmann, G. Staikov, and K. Szot: Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

    Article  CAS  Google Scholar 

  2. Y.V. Pershin and M. Di Ventra: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60, 145–227 (2011).

    Article  Google Scholar 

  3. J. Ouyang: Application of nanomaterials in two-terminal resistive-switching memory devices. Nano Rev. 1, 1–14 (2010).

    Article  Google Scholar 

  4. A. Sawa: Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (2008).

    Article  CAS  Google Scholar 

  5. R.Y. Wang, R. Tangirala, S. Raoux, J.L. Jordan-Sweet, and D.J. Milliron: Ionic and electronic transport in Ag2S nanocrystal-GeS2 matrix composites with size-controlled Ag2S nanocrystals. Adv. Mater. 24, 99–103 (2012).

    Article  CAS  Google Scholar 

  6. D-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X-S. Li, G-S. Park, B. Lee, S. Han, M. Kim, and C.S. Hwang: Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010).

    Article  CAS  Google Scholar 

  7. B.D. Briggs, S.M. Bishop, J.O. Capulong, M.Q. Hovish, R.J. Matyi, and N.C. Cady: Comparison of HfOx-based resistive memory devices with crystalline and amorphous active layers. Semiconductor Device Research Symposium (ISDRS), 2011 International. 7-9 Dec. 2011, pp. 1–2.

    Google Scholar 

  8. F. Miao, J.P. Strachan, J.J. Yang, M-X. Zhang, I. Goldfarb, A.C. Torrezan, P. Eschbach, R.D. Kelley, G. Medeiros-Ribeiro, and R.S. Williams: Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv. Mater. 23, 5633–5640 (2011).

    Article  CAS  Google Scholar 

  9. J. Qi, M. Olmedo, J. Ren, N. Zhan, J. Zhao, J-G. Zheng, and J. Liu: Resistive switching in single epitaxial ZnO nanoislands. ACS Nano. 6, 1051–1058 (2012).

    Article  CAS  Google Scholar 

  10. J.E. Van Nostrand, R. Cortez, Z.P. Rice, N.C. Cady, and M. Bergkvist: Local transport properties, morphology and microstructure of ZnO decorated SiO2 nanoparticles. Nanotechnology 21, 415602 (2010).

    Article  Google Scholar 

  11. E. Linn, R. Rosezin, C. Kiigeler, and R. Waser: Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 403–406 (2010).

    Article  CAS  Google Scholar 

  12. S.M. Bishop, H. Bakhru, S.W. Novak, B.D. Briggs, R.J. Matyi, and N.C. Cady: Ion implantation synthesized copper oxide-based resistive memory devices. Appl. Phys. Lett. 99, 202102 (2011).

    Article  Google Scholar 

  13. C. Cagli, F. Nardi, and D. Ielmini: Modeling of set/reset operations in NiO-based resistive-switching memory devices. IEEE Trans. Electron Devices 56, 1712–1720 (2009).

    Article  CAS  Google Scholar 

  14. C. Schindler, S.C.P. Thermadam, R. Waser, and M.N. Kozicki: Bipolar and unipolar resistive switching in Cu-doped SiO2. IEEE Trans. Electron Devices 54, 2762–2768 (2007).

    Article  CAS  Google Scholar 

  15. J.G. Simmons and R.R. Verderber: New conduction and reversible memory phenomena in thin insulating films. Proc. R. Soc. A: Math. Phys. Eng. Sci. 301, 77–102 (1967).

    CAS  Google Scholar 

  16. S. Furuta, T. Takahashi, Y. Naitoh, M. Horikawa, T. Shimizu, and M. Ono: Dependence of electric properties of a nanogap junction on electrode material. Jpn. J. Appl. Phys. 47, 1806–1812 (2008).

    Article  CAS  Google Scholar 

  17. M. Meier, S. Gilles, R. Rosezin, C. Schindler, S. Trellenkamp, A. Riidiger, D. Mayer, C. Kügeler, and R. Waser: Resistively switching Pt/spin-on glass/Ag nanocells for non-volatile memories fabricated with UV nanoimprint lithography. Microelectron. Eng. 86, 1060–1062 (2009).

    Article  CAS  Google Scholar 

  18. R. Rosezin, M. Meier, U. Breuer, C. Kiigeler, and R. Waser: Electroforming and resistance switching characteristics of silver-doped MSQ with inert electrodes. IEEE Trans. Nanotechnol. 10,338-343(2011).

  19. J. Yao, Z. Sun, L. Zhong, D. Natelson, and J.M. Tour: Resistive switches and memories from silicon oxide. Nano Lett. 10, 4105–4110 (2010).

    Article  CAS  Google Scholar 

  20. J. Yao, L. Zhong, D. Natelson, and J.M. Tour: Intrinsic resistive switching and memory effects in silicon oxide. Appl. Phys. A. 102, 835–839 (2011).

    Article  CAS  Google Scholar 

  21. J. Yao, L. Zhong, D. Natelson, and J.M. Tour: Etching-dependent reproducible memory switching in vertical SiO2 structures. Appl. Phys. Lett. 93, 253101 (2008).

    Article  Google Scholar 

  22. A. Mehonic, S. Cueff, M. Wojdak, S. Hudziak, O. Jambois, C. Labbé, B. Garrido, R. Rizk, and A.J. Kenyon: Resistive switching in silicon suboxide films. J. Appl. Phys. 111, 074507 (2012).

    Article  Google Scholar 

  23. C. Schindler, M. Weides, M.N. Kozicki, and R. Waser: Low current resistive switching in Cu-SiO2 cells. Appl. Phys. Lett. 92, 122910 (2008).

    Article  Google Scholar 

  24. S. Kim, H.Y. Jeong, S.K. Kim, S-Y. Choi, and K.J. Lee: Flexible memristive memory array on plastic substrates. Nano Lett. 11, 5438–5442 (2011).

    Article  CAS  Google Scholar 

  25. C-C. Yang and W-C. Chen: The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing. J. Mater. Chem. 12, 1138–1141 (2002).

    Article  CAS  Google Scholar 

  26. P. Bornhauser and G. Calzaferri: Ring-opening vibrations of spherosiloxanes. J. Phys. Chem. 100, 2035–2044 (1996).

    Article  CAS  Google Scholar 

  27. C. Marcolli, P. Lainé, R. Biihler, G. Calzaferri, and J. Tomkinson: Vibrations of H8Si8012, D8Si8012, and H10Si10O15 as determined by INS, IR, and Raman experiments. J. Phys. Chem. B. 101, 1171–1179 (1997).

    Article  CAS  Google Scholar 

  28. K.M. Kim, D.S. Jeong, and C.S. Hwang: Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology 22, 254002 (2011).

    Article  Google Scholar 

  29. K.M. Kim, B.J. Choi, B.W. Koo, S. Choi, D.S. Jeong, and C.S. Hwang: Resistive switching in Pt/Al2O3/TiO2/Ru stacked structures. Electrochem. Solid-State Lett. 9, G343–G346 (2006).

    Article  CAS  Google Scholar 

  30. A.L.S. Loke, C.P. Yue, J. S.H. Cho, and S.S. Wong: Kinetics of copper drift in PECVD dielectrics. IEEE Electron Device Lett. 17, 549–551 (1996).

    Article  CAS  Google Scholar 

  31. S.P. Thermadam, S.K. Bhagat, T.L. Alford, Y. Sakaguchi, M.N. Kozicki, and M. Mitkova: Influence of Cu diffusion conditions on the switching of Cu-SiO2-based resistive memory devices. Thin Solid Films 518, 3293–3298 (2010).

    Article  CAS  Google Scholar 

  32. B.G. Willis and D.V. Lang: Oxidation mechanism of ionic transport of copper in SiO2 dielectrics. Thin Solid Films 467, 284–293 (2004).

    Article  CAS  Google Scholar 

  33. M. He and T-M. Lu: Metal-dielectric interfaces in gigascale electronics. In Chapter 2 Metal-Dielectric Diffusion Processes: Fundamentals, R. Hull, C. Jagadish, R.M. Osgood, J. Parisi, and Z.M. Wang, eds. Vol. 157 (Springer, New York, NY, 2012); pp. 11–22.

    Google Scholar 

  34. P. Zhi-yong and W. Ming-pu: Thermomechanical treatment of super high strength Cu-8.0Ni-l.8Si alloy. Trans. Nonferrous Met. Soc. China 17, S1076–S1080 (2007).

    Google Scholar 

  35. J. Stobrawa, Z. Rdzawski, W. Ghichowski, and W. Malec: Ultrafine grained strips of precipitation hardened copper alloys. Arch. Metall. Mater. 56, 171–179 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the Air Force Research Laboratory Grant No. FA8750-11-1-0008. The authors would like to acknowledge the Center for Semiconductor Research at CNSE for wafer development and Dr. Joseph Van Nostrand, AFRL-RI, for programmatic/scientific support. The authors would like to thank Dr. Steve Novak for SIMS measurements, Dr. Richard Matyi for XRD measurements, and Dr. Ji Ung Lee and Mr. Everett Comfort for the temperature-based I-V measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel C. Cady.

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rice, Z.P., Briggs, B.D., Bishop, S.M. et al. Development of a silicon oxide-based resistive memory device using a spin-on hydrogen silsesquioxane precursor. Journal of Materials Research 27, 3110–3116 (2012). https://doi.org/10.1557/jmr.2012.390

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.390

Navigation