Skip to main content
Log in

Structure transition, formation, and optical absorption property study of Ag/SiO2 nanofilm by sol-gel method

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ag nanoparticles dispersed SiO2 composite films were successfully prepared by a sol-gel method. The structural transition, formation, and optical property along with relevant band gap of Ag/SiO2 thin films during the annealing process were studied by Fourier transform infrared spectroscopy, thermogravimetry-differential thermal analysis, x-ray diffraction, and ultraviolet-visible spectroscopy, while the micro structure of thin films was revealed by transmission electron microscopy. The results indicate that the Ag spherical particles with the diameter of 10-20 nm were formed by breaking Si-O-Ag bonds above 200 °C and dispersed in the SiO2 matrix. The optical absorption property of Ag/SiO2 nanofilm in the visible range is enhanced, and the band gap (Eg) is widened with raising annealing temperatures, which is promising for the potential applications in nonlinear optical and related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Table I
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, Germany, 1995).

    Book  Google Scholar 

  2. C. Sella, S. Chenot, V. Reillon, and S. Berthier: Influence of the deposition conditions on the optical absorption of Ag-SiO2 nano-cermet thin films. Thin Solid Films 517, 5848 (2009).

    Article  CAS  Google Scholar 

  3. U. Kreibig and L. Genzel: Optical absorption of small metallic particles. Surf. Sci. 156, 678 (1985).

    Article  CAS  Google Scholar 

  4. B.J. Persson: Surface resistivity and vibrational damping in adsorbed layers. Phys. Rev. B 44, 3277 (1991).

    Article  CAS  Google Scholar 

  5. G.D. Stucky and J.E. Mac Dougall: Quantum confinement and host/guest chemistry: Probing a new dimension. Science 247(4943), 669 (1990).

    Article  CAS  Google Scholar 

  6. A.A. Scalisi, G. Compagnini, L. D’Urso, and O. Puglisi: Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration. Appl. Surf. Sci. 226, 237 (2004).

    Article  CAS  Google Scholar 

  7. L. Guo, A. Guan, X. Lin, C. Zhang, and G. Chen: Preparation of a new core-shell Ag@SiO2 nanocomposite and its application for fluorescence enhancement. Talanta 82, 1696 (2010).

    Article  CAS  Google Scholar 

  8. P. Gangopadhyay, R. Kesavamoorthy, K.G.M. Nair, and R. Dhandapani: Raman scattering studies on silver nanoclusters in a silica matrix formed by ion-beam mixing. J. Appl. Phys. 88(9), 4975 (2000).

    Article  CAS  Google Scholar 

  9. Z.X. Liu, H. Li, X.D. Feng, S.G. Ren, and H.H. Wang: Formation effects and optical absorption of Ag nanocrystals embedded in single crystal SiO2 by implantation. J. Appl. Phys. 84(4), 1913 (1998).

    Article  CAS  Google Scholar 

  10. L. Yang, Y.L. Liu, Q.M. Wang, H.Z. Shi, G.H. Li, and L.D. Zhang: The plasmon resonance absorption of Ag/SiO2 nanocomposite films. Microelectron. Eng. 66, 192 (2003).

    Article  CAS  Google Scholar 

  11. I. Tanahashi, M. Yoshida, Y. Manabe, and T. Tohda: Effects of heat treatment on Ag particle growth and optical properties in Ag/SiO2 glass composite thin films. J. Mater. Res. 10, 362 (1995).

    Article  CAS  Google Scholar 

  12. A. Babapour, O. Akhavan, A.Z. Moshfegh, and A.A. Hosseini: Size variation and optical absorption of sol-gel Ag nanoparticles doped SiO2 thin film. Thin Solid Films 515, 771 (2006).

    Article  CAS  Google Scholar 

  13. L.S. Jiao, B.P. Zhang, X.Z. Ding, C. Chen, and H.L. Zhang: Sol-gel preparation of Ag/SiO2 nano-composite films and their optical absorption properties. Rare Met. Mater. Eng. 36, 882 (2007).

    CAS  Google Scholar 

  14. M. Chatterjee and M.K. Naskar: Sol-gel synthesis of lithium aluminum silicate powders: The effect of silica source. Ceram. Int. 32, 623 (2006).

    Article  CAS  Google Scholar 

  15. E. Monsivais-Gamez, F. Ruiz, and J.R. Martinez: Four-membered rings family in the Si-O extended rocking IR band from quantum chemistry calculations. J. Sol-Gel Sci. Technol. 43(1), 65 (2007).

    Article  CAS  Google Scholar 

  16. V.K. Parashar, V. Raman, and O.P. Bahl: The role of N,N, dimethylformamide and glycol in the preparation and properties of sol-gel derived silica. J. Mater. Sci. Lett. 15(16), 1403 (1996).

    Article  CAS  Google Scholar 

  17. M. Stefanescu, M. Stoia, and O. Stefanescu: Thermal and FT-IR study of the hybrid ethylene-glycol-silica matrix. J. Sol-Gel Sci. Technol. 41(1), 71 (2007).

    Article  CAS  Google Scholar 

  18. W.X. Que, Y. Zhou, Y.L. Lam, Y.C. Chan, H.T. Tan, T.H. Tan, and C.H. Kam: Sol-gel processed silica/titania/y-glycidoxypropy-ltrimethoxysilane composite materials for photonic applications. J. Electron. Mater. 29(8), 1052 (2000).

    Article  CAS  Google Scholar 

  19. N.B. Colthup, L.H. Daly, and S.E. Wiberiey: Introduction to Infrared and Raman Spectroscopy, 2nd ed (Academic Press, New York, 1975).

    Google Scholar 

  20. J. Soderlund, L.B. Kiss, G.A. Niklasson, and C.G. Granqvist: Lognormal size distributions in particle growth processes without coagulation. Phys. Rev. Lett. 80(11), 2386 (1998).

    Article  CAS  Google Scholar 

  21. B. Karmakar, G. De, and D. Ganguli: Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS. J. Non-Cryst. Solids 272(40239), 119 (2000).

    Article  CAS  Google Scholar 

  22. G. De, B. Karmakar, and D. Ganguli: Hydrolysis-condensation reactions of TEOS in presence of acetic acid leading to the generation of glass-like silica microspheres in solution at room temperature. J. Mater. Chem. 10, 2289 (2000).

    Article  CAS  Google Scholar 

  23. G. De, D. Kundu, B. Karmakar, and D. Ganguli: FTIR studies of gel to glass conversion in TEOS-fumed silica derived gels, J. Non-Cryst. Solids 155, 253 (1993).

    Article  CAS  Google Scholar 

  24. H.J. Jeon, S.C. Yi, and S.G. Oh: Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method. Biomaterials 24, 4921 (2003).

    Article  CAS  Google Scholar 

  25. J. Wang, C.R. Zhang, and J. Feng: Modification of nanoporous silica film by trimethylchlorosilane. Acta Phys. Chim. Sin. 20, 1399 (2004).

    Article  CAS  Google Scholar 

  26. P. Innocenzi: Infrared spectroscopy of sol-gel derived silica-based films: A spectra-microstructure overview. J. Non-Cryst. Solids 316(2-3), 309 (2003).

    Article  CAS  Google Scholar 

  27. J.R. Martinez, F. Ruiz, Y.V. Vorobiev, F. Pérez-Robles, and J. Gonzalez-Hernandez: Infrared spectroscopy analysis of the local atomic structure in silica prepared by sol-gel. J. Chem. Phys. 109(17), 7511 (1998).

    Article  CAS  Google Scholar 

  28. M. Parler Caroline, A. Ritter James, and D. Amiridis Michael: Infrared spectroscopic study of sol-gel derived mixed-metal oxides, J. Non-Cryst. Solids 279(2-3), 119 (2001).

    Article  Google Scholar 

  29. D. Niznansky and J.L. Rehspringer: Infrared study of SiO2 sol to gel evolution and gel aging. J. Non-Cryst. Solids 180, 191 (1995).

    Article  CAS  Google Scholar 

  30. M. Yamane: in Sol-Gel Technology for Thin Films, edited by L.C. Klein (Noyes Publications, New Jersey, 1989).

  31. C.C. Perry, X. Li, and D.N. Waters: Structural studies of gel phases. 4. An infrared reflectance and Fourier-transform Raman-study of silica and silica titania gel glasses. Spectrochim. Acta 47, 1487 (1991).

    Article  Google Scholar 

  32. L. Lan, G. Gnappi, and A. Montenero: Infrared study of EPOXS-TEOS-TPOT gels. J. Mater. Sci. 28, 2119 (1993).

    Article  CAS  Google Scholar 

  33. C.H. Zhao, B.P. Zhang, and P.P. Shang: Enhanced nonlinear optical absorption of Au/SiO2 nano composite thin films. Chin. Phys. B 18, 5539 (2009).

    Article  CAS  Google Scholar 

  34. R. Pinkos, M. Wesotowski, and J. Teodorczyk: Thermal analysis of some pharmaceutically relevant systems obtained by sol-gel technique. J. Therm. Anal. Calorim. 70, 447 (2002).

    Article  Google Scholar 

  35. L.H. Allen and E. Matijevic: Stability of colloidal silica: III. Effect of hydrolyzable cations. Interface Sci. 35, 66 (1971).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Xi-Zhen Ding (graduate student of USTB) for a part of his experiments. This work was supported by Major State Basic Research Development (Grant No. 2007CB613301), the National Natural Science Foundation of China (Grant No. 50972012), and Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20090006110010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Ping Zhang.

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Zhang, BP., Zhao, CH. et al. Structure transition, formation, and optical absorption property study of Ag/SiO2 nanofilm by sol-gel method. Journal of Materials Research 27, 3141–3146 (2012). https://doi.org/10.1557/jmr.2012.388

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.388

Navigation