Skip to main content
Log in

Evolution of titanium dioxide one-dimensional nanostructures from surface-reaction-limited pulsed chemical vapor deposition

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper reviews the recent development of surface-reaction-limited pulsed chemical vapor deposition (SPCVD) technique for the growth of TiO2 one-dimensional nanostructures. SPCVD uses separated TiCl4 and H2O precursor pulses, and the anisotropic growth of TiO2 crystals is attributed to the combined effects of surface recombination and HCl restructuring at high temperature during elongated purging time. Therefore, the crystal growth is effectively decoupled from precursor vapor concentration, which allows uniform growth of TiO2 nanorods (NRs) inside highly confined spaces. The phase of TiO2 NRs can be tuned from anatase to rutile by raising the deposition temperature. Au catalysts are able to enhance the growth rate and led to bifurcated nanowire (NW) morphology. A high density three-dimensional (3D) NW architecture was created by SPCVD growing TiO2NRs inside dense Si NW forests. Such 3D structures offer both large surface area and excellent charge transport property, which substantially improved the efficiency of photoelectrochemical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
TABLE I.
FIG. 7.
FIG. 8.
TABLE II.

Similar content being viewed by others

References

  1. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, and G.Q. Lu: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638 (2008).

    Article  CAS  Google Scholar 

  2. J.T. Jiu, S. Isoda, F.M. Wang, and M. Adachi: Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. J. Phys. Chem. B 110, 2087 (2006).

    Article  CAS  Google Scholar 

  3. S.U.M. Khan, M. Al-Shahry, and W.B. Ingler: Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243 (2002).

    Article  CAS  Google Scholar 

  4. B. Liu and E.S. Aydil: Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985 (2009).

    Article  CAS  Google Scholar 

  5. Y.J. Hwang, A. Boukai, and P.D. Yang: High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett. 9, 410 (2009).

    Article  CAS  Google Scholar 

  6. M. Adachi, Y. Murata, J. Takao, J.T. Jiu, M. Sakamoto, and F.M. Wang: Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the tnq#x201C;oriented attachmenttnq#x201D; mechanism. J. Am. Chem. Soc. 126, 14943 (2004).

    Article  CAS  Google Scholar 

  7. A.S. Zuruzi, A. Kolmakov, N.C. MacDonald, and M. Moskovits: Highly sensitive gas sensor based on integrated titania nanosponge arrays. Appl. Phys. Lett. 88, 102904 (2006).

    Article  Google Scholar 

  8. A.R. Armstrong, G. Armstrong, J. Canales, R. Garcia, and P.G. Bruce: Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17, 862 (2005).

    Article  CAS  Google Scholar 

  9. J.W. Liu, Y.T. Kuo, K.J. Klabunde, C. Rochford, J. Wu, and J. Li: Novel dye-sensitized solar cell architecture using TiO2-coated vertically aligned carbon nanofiber arrays. ACS Appl. Mater. Interfaces 1, 1645 (2009).

    Article  CAS  Google Scholar 

  10. M. Ni, M.K.H. Leung, D.Y.C. Leung, and K. Sumathy: A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable Sustainable Energy Rev. 11, 401 (2007).

    Article  CAS  Google Scholar 

  11. U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583 (1998).

    Article  CAS  Google Scholar 

  12. M. Law, L.E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, and P.D. Yang: ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. J. Phys. Chem. B 110, 22652 (2006).

    Article  CAS  Google Scholar 

  13. L.E. Greene, M. Law, B.D. Yuhas, and P.D. Yang: ZnO-TiO2 core-shell nanorod/P3HT solar cells. J. Phys. Chem. C 111, 18451 (2007).

    Article  CAS  Google Scholar 

  14. A.S. Barnard and P. Zapol: Predicting the energetics, phase stability, and morphology evolution of faceted and spherical anatase nanocrystals. J. Phys. Chem. B 108, 18435 (2004).

    Article  CAS  Google Scholar 

  15. A.S. Barnard and L.A. Curtiss: Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett. 5, 1261 (2005).

    Article  CAS  Google Scholar 

  16. Z. Miao, D.S. Xu, J.H. Ouyang, G.L. Guo, X.S. Zhao, and Y.Q. Tang: Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires. Nano Lett. 2, 717 (2002).

    Article  CAS  Google Scholar 

  17. Y.X. Zhang, G.H. Li, Y.X. Jin, Y. Zhang, J. Zhang, and L.D. Zhang: Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chem. Phys. Lett. 365, 300 (2002).

    Article  CAS  Google Scholar 

  18. E. Formo, E. Lee, D. Campbell, and Y.N. Xia: Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. Nano Lett. 8, 668 (2008).

    Article  CAS  Google Scholar 

  19. E. Hosono, S. Fujihara, K. Kakiuchi, and H. Imai: Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. J. Am. Chem. Soc. 126, 7790 (2004).

    Article  CAS  Google Scholar 

  20. D.V. Bavykin, J.M. Friedrich, and F.C. Walsh: Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv. Mater. 18, 2807 (2006).

    Article  CAS  Google Scholar 

  21. R. Yoshida, Y. Suzuki, and S. Yoshikawa: Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments. J. Solid State Chem. 178, 2179 (2005).

    Article  CAS  Google Scholar 

  22. G.Y. Chen, M.W. Lee, and G.J. Wang: Fabrication of dye-sensitized solar cells with a 3D nanostructured electrode. Int. J. Photoenergy 2010, 585621 (2010).

    Google Scholar 

  23. X.J. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, and C.A. Grimes: Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 8, 3781 (2008).

    Article  CAS  Google Scholar 

  24. J.M. Wu, H.C. Shih, W.T. Wu, Y.K. Tseng, and I.C. Chen: Thermal evaporation growth and the luminescence property of TiO2 nanowires. J. Cryst. Growth 281, 384 (2005).

    Article  CAS  Google Scholar 

  25. S.S. Amin, A.W. Nicholls, and T.T. Xu: A facile approach to synthesize single-crystalline rutile TiO2 one-dimensional nanostructures. Nanotechnology 18, 445609 (2007).

    Article  Google Scholar 

  26. J.Y. Ha, B.D. Sosnowchik, L.W. Lin, D.H. Kang, and A.V. Davydov: Patterned growth of TiO2 nanowires on titanium substrates. Appl. Phys. Express 4, 065002 (2011).

    Article  Google Scholar 

  27. M.H. Kim, J.M. Baik, J.P. Zhang, C. Larson, Y.L. Li, G.D. Stucky, M. Moskovits, and A.M. Wodtke: TiO2 nanowire growth driven by phosphorus-doped nanocatalysis. J. Phys. Chem. C 114, 10697 (2010).

    Article  CAS  Google Scholar 

  28. S.K. Pradhan, P.J. Reucroft, F.Q. Yang, and A. Dozier: Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J. Cryst. Growth 256, 83 (2003).

    Article  CAS  Google Scholar 

  29. J. Shi, C.L. Sun, M.B. Starr, and X.D. Wang: Growth of titanium dioxide nanorods in 3D-confined spaces. Nano Lett. 11, 624 (2011).

    Article  CAS  Google Scholar 

  30. S.M. George: Atomic layer deposition: An overview. Chem. Rev. 110, 111 (2010).

    Article  CAS  Google Scholar 

  31. A. Danon, K. Bhattacharyya, B.K. Vijayan, J.L. Lu, D.J. Sauter, K.A. Gray, P.C. Stair, and E. Weitz: Effect of reactor materials on the properties of titanium oxide nanotubes. ACS Catal. 2, 45 (2012).

    Article  CAS  Google Scholar 

  32. J. Shi, Y. Hara, C.L. Sun, M.A. Anderson, and X.D. Wang: Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes. Nano Lett. 11, 3413 (2011).

    Article  CAS  Google Scholar 

  33. M. Ritala, M. Leskela, E. Nykanen, P. Soininen, and L. Niinisto: Growth of titanium dioxide thin films by atomic layer epitaxy. Thin Solid Films 225, 288 (1993).

    Article  CAS  Google Scholar 

  34. J. Shi and X. Wang: Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. Cryst. Growth Des. 11, 949 (2011).

    Article  CAS  Google Scholar 

  35. S. Takabayashi, R. Nakamura, and Y. Nakato: A nano-modified Si/TiO2 composite electrode for efficient solar water splitting. J. Photochem. Photobiol., A 166, 107 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank C. Sun, M. Starr, Y. Hara, and M. Anderson for their contributions to the work reviewed in this paper. We also thank the support from National Science Foundation under Grant No. CMMI-0926245, 3M, and UW–Madison Graduate School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Shi, J. Evolution of titanium dioxide one-dimensional nanostructures from surface-reaction-limited pulsed chemical vapor deposition. Journal of Materials Research 28, 270–279 (2013). https://doi.org/10.1557/jmr.2012.356

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.356

Navigation