Skip to main content
Log in

Nickel nanoparticles synthesized by a modified polyol method for the purification of histidine-tagged single-domain antibody ToxA5.1

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nickel nanoparticles (NNPs) synthesized by a modified polyol method using ethylene glycol as a reducing agent, palladium chloride as a nucleating agent, and polyvinylpyrrolidone (PVP) as a protective agent were investigated as a potential magnetic adsorbent for the purification of hexahistidine-tagged (His6-tagged) recombinant proteins. The synthesis resulted in nanoparticles having an average diameter of 68 ± 28 nm. The x-ray diffraction pattern confirmed the presence of nickel metal, as well as the presence of unreacted nickel (II) hydroxide Ni(OH)2. Magnetic characterization showed that a magnetization saturation of 39.3 electromagnetic unit (emu)/g at 20,000 Oersted (Oe) was reached rapidly and that the material exhibited ferromagnetic behavior. Protein purification results showed that the synthesized NNPs were highly selective for binding to a His6-tagged recombinant protein single-domain antibody ToxA5.1. In addition, NNPs were used for four adsorption cycles without significant binding capacity losses. These particles have shown great potential such as being easily synthesized, cost-effective, and highly selective magnetic adsorbents for the purification of His6-tagged recombinant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

REFERENCES

  1. E. Langer and J. Ranck: Capacity bottleneck squeezed by downstream processes. Bioprocess Int. 4, 14 (2006).

    Google Scholar 

  2. D. Low, R. O’Leary, and N.S. Pujar: Future of antibody purification. J. Chromatogr. B 848, 48 (2007).

    Article  CAS  Google Scholar 

  3. M. Franzreb, M. Siemann-Herzberg, T.J. Hobley, and O.R.T. Thomas: Protein purification using magnetic adsorbent particles. Appl. Microbiol. Biotechnol. 70, 505 (2006).

    Article  CAS  Google Scholar 

  4. D. Horák, M. Babič, H. Macková, and M.J. Beneš: Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. J. Sep. Sci. 30, 1751 (2007).

    Article  Google Scholar 

  5. F. Ai, A. Yao, W. Huang, D. Wang, and X. Zhang: Synthesis of PVP-protected NiPd nanoalloys by modified polyol process and their magnetic properties. Physica E 42, 1281 (2010).

    Article  CAS  Google Scholar 

  6. G.G. Couto, J.J. Klein, W.H. Schreiner, D.H. Mosca, A.J.A. de Oliveira, and A.J.G. Zarbin: Nickel nanoparticles obtained by a modified polyol process: Synthesis, characterization, and magnetic properties. J. Colloid Interface Sci. 311, 461 (2007).

    Article  CAS  Google Scholar 

  7. H. Zhang, J. Ding, G. Chow, M. Ran, and J. Yi: Engineering magnetic properties of Ni nanoparticles by nonmagnetic cores. Chem. Mater. 21, 5222 (2009).

    Article  CAS  Google Scholar 

  8. J. Porath and B. Olin: Immobilized metal ion affinity adsorption and immobilized metal ion affinity chromatography of biomaterials. Serum protein affinities for gel-immobilized iron and nickel ions. Biochemistry 22, 1621 (1983).

    Article  CAS  Google Scholar 

  9. J. Porath: Immobilized metal ion affinity chromatography. Protein Expression Purif. 3, 263 (1992).

    Article  CAS  Google Scholar 

  10. K.J. Carroll, J.U. Reveles, M.D. Shultz, S.N. Khanna, and E.E. Carpenter: Preparation of elemental Cu and Ni nanoparticles by the polyol method: An experimental and theoretical approach. J. Phys. Chem. C 115, 2656 (2011).

    Article  CAS  Google Scholar 

  11. E.A. Baranova, A. Cally, A. Allagui, S. Ntais, and R. Wüthrich: Nickel particles with increased catalytic activity towards hydrogen evolution reaction. C.R. Chim. (2012). doi: 10.1016/j.crci.2012.02.003.

    Google Scholar 

  12. I.S. Lee, N. Lee, J. Park, B.H. Kim, Y.W. Yi, T. Kim, T.K. Kim, I.H. Lee, S.R. Paik, and T. Hyeon: Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J. Am. Chem. Soc. 128, 10658 (2006).

    Article  CAS  Google Scholar 

  13. J. Kim, Y. Piao, N. Lee, Y.I. Park, I.H. Lee, J.H. Lee, S.R. Paik, and T. Hyeon: Magnetic nanocomposite spheres decorated with NiO nanoparticles for a magnetically recyclable protein separation system. Adv. Mater. 22, 57 (2010).

    Article  CAS  Google Scholar 

  14. L. Bai, J. Fan, Y. Cao, F. Yuan, A. Zuo, and Q. Tang: Shape-controlled synthesis of Ni particles via polyol reduction. J. Cryst. Growth 311, 2474 (2009).

    Article  CAS  Google Scholar 

  15. G. Hussack, M. Arbabi-Ghahroudi, H. Van Faassen, J.G. Songer, K.K.S. Ng, R. MacKenzie, and J. Tanha: Neutralization of Clostridium difficile toxin A with single-domain antibodies targeting the cell receptor binding domain. J. Biol. Chem. 286, 8961 (2011).

    Article  CAS  Google Scholar 

  16. M.D. Abràmoff, P.J. Magalhães, and S.J. Ram: Image processing with imageJ. Biophotonics Int. 11, 36 (2004).

    Google Scholar 

  17. U.K. Laemmli: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680 (1970).

    Article  CAS  Google Scholar 

  18. B.D. Cullity: Elements of X-Ray Diffraction, 3rd ed. (Addison-Wesley Publishing Co., Boston, MA, 1956).

    Google Scholar 

  19. K.S. Chou and K.C. Huang: Studies on the chemical synthesis of nanosized nickel powder and its stability. J. Nanopart. Res. 3, 127 (2001).

    Article  CAS  Google Scholar 

  20. A.R. West: Solid State Chemistry and its Applications (Wiley, Hoboken, NJ, 1984).

    Google Scholar 

  21. V. Gaberc-Porekar and V. Menart: Perspectives of immobilized-metal affinity chromatography. J. Biochem. Bioph. Methods 49, 335 (2001).

    Article  CAS  Google Scholar 

  22. H. Block, B. Maertens, A. Spriestersbach, N. Brinker, J. Kubicek, R. Fabis, J. Labahn, and F. Schäfer: Immobilized-metal affinity chromatography (IMAC). A review, in Methods in Enzymology (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2009), p. 439.

    Google Scholar 

  23. C.W. Chen, H.L. Liu, J.C. Lin, and Y. Ho: Molecular dynamics simulations of metal ion binding to the His-tag motif. J. Chin. Chem. Soc. 52, 1281 (2005).

    Article  CAS  Google Scholar 

  24. J.M. Nam, S.W. Han, K.B. Lee, X. Liu, M.A. Ratner, and C.A. Mirkin: Bioactive protein nanoarrays on nickel oxide surfaces formed by dip-pen nanolithography. Angew. Chem. Int. Ed. 43, 1246 (2004).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank Dr. Yun Liu for the SEM pictures, Dr. Tara Kell for the XRD scan, and Dr. Muralee Murugesu’s laboratory for the SQUID measurements. Financial support from the Natural Science and Engineering Council of Canada (NSERC) and Canadian Foundation of Innovation (CFI) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Qingdao Lan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parisien, A., Al-Zarka, F., Hussack, G. et al. Nickel nanoparticles synthesized by a modified polyol method for the purification of histidine-tagged single-domain antibody ToxA5.1. Journal of Materials Research 27, 2884–2890 (2012). https://doi.org/10.1557/jmr.2012.323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.323

Navigation