Skip to main content
Log in

Entrapment of DFPase in titania coatings from a biomimetically derived method

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Silicon oxide has been widely used to encapsulate biomolecules to preserve their activity in less than ideal environments. However, there are other inorganic oxides with inherent properties that would be advantageous in creating a multifunctional material. Titanium oxide exhibits properties that have applications in areas such as electronics, energy conversion, and decontamination. Herein is reported the formation of titania coatings fabricated on polymer beads using a biomimetic approach and characterized with scanning electron microscopy and energy dispersive x-ray spectroscopy. The approach involves the use of functionalized polymer beads, which initiate oxide formation from a water-soluble titanium complex. The method was used to encapsulate the enzyme diisopropylfluorophosphatase, in situ, within the oxide matrix under buffered aqueous conditions while retaining its enzymatic activity against diisopropylfluorophosphate. In addition, the biomimetically produced titania was shown to exhibit UV-assisted degradation activity against an ethidium bromide dye, upon liberation from the coating template.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
TABLE I.
TABLE II.
TABLE III.

Similar content being viewed by others

References

  1. S.W. May and N.N. Li: Liquid-membrane encapsulated enzymes, in Biomedical Applications of Immobilized Enzymes and Proteins, edited by T.M.S. Chang (Plenum Press, New York, 1977), pp. 171–190.

    Chapter  Google Scholar 

  2. I. Gill and A. Ballesteros: Bioencapsulation within synthetic polymers (Part 1): Sol–gel encapsulated biologicals. Trends Biotechnol. 18, 282 (2000).

    Article  CAS  Google Scholar 

  3. I. Gill and A. Ballesteros: Bioencapsulation within synthetic polymers (Part 2): Non-sol–gel protein–polymer biocomposites. Trends Biotechnol. 18, 469 (2000).

    Article  CAS  Google Scholar 

  4. J. Livage, T. Coradin, and C. Roux: Encapsulation of biomolecules in silica gels. J. Phys. Condens. Matter 13, R673 (2001).

    Article  CAS  Google Scholar 

  5. Z. Yang, S. Si, and C. Zhang: Magnetic single-enzyme nanoparticles with high activity and stability. Biochem. Biophys. Res. Commun. 367, 169 (2008).

    Article  CAS  Google Scholar 

  6. T.M.S. Chang: Encapsulation of enzymes, cell contents, cells, vaccines, antigens, antiserum, cofactors, hormones, and proteins, in Biomedical Applications of Immobilized Enzymes and Proteins, edited by T.M.S. Chang (Plenum Press, New York, 1977), pp. 69–90.

    Chapter  Google Scholar 

  7. P. Walde and S. Ichikawa: Enzymes inside lipid vesicles: Preparation, reactivity and applications. Biomol. Eng. 18, 143 (2001).

    Article  CAS  Google Scholar 

  8. Y. Li and W.T. Yip: Liposomes as protective capsules for active silica sol-gel biocomposite synthesis. J. Am. Chem. Soc. 127, 12756 (2005).

    Article  CAS  Google Scholar 

  9. K.E. Cole, A.N. Ortiz, M.A. Schoonen, and A.M. Valentine: Peptide- and long-chain polyamine-induced synthesis of micro- and nanostructured titanium phosphate and protein encapsulation. Chem. Mater. 18, 4592 (2006).

    Article  CAS  Google Scholar 

  10. H.R. Luckarift, J.C. Spain, R.R. Naik, and M.O. Stone: Enzyme immobilization in a biomimetic silica support. Nat. Biotechnol. 22, 211 (2004).

    Article  CAS  Google Scholar 

  11. R.R. Naik, M.M. Tomczak, H.R. Luckarift, J.C. Spain, and M.O. Stone: Entrapment of enzymes and nanoparticles using biomimetically synthesized silica. Chem. Commun. (15), 1684 (2004).

    Article  CAS  Google Scholar 

  12. R.K. Sharma, S. Das, and A. Maitra: Enzymes in the cavity of hollow silica nanoparticles. J. Colloid Interface Sci. 284, 358 (2005).

    Article  CAS  Google Scholar 

  13. S.A. Miller, E.D. Hong, and D. Wright: Rapid and efficient enzyme encapsulation in a dendrimer silica nanocomposite. Macromol. Biosci. 6, 839 (2006).

    Article  CAS  Google Scholar 

  14. M. Mureseanu, A. Galarneau, G. Renard, and F. Fajula: A new mesoporous micelle-templated silica route for enzymes encapsulation. Langmuir 21, 4648 (2005).

    Article  CAS  Google Scholar 

  15. A.C. Pierre: The sol-gel encapsulation of enzymes. Biocatalysis Biotransform. 22, 145 (2004).

    Article  CAS  Google Scholar 

  16. Y. Wang and F. Caruso: Enzyme encapsulation in nanoporous silica spheres. Chem. Commun. (13), 1528 (2004).

    Article  CAS  Google Scholar 

  17. Y. Wei, J. Xu, Q. Feng, H. Dong, and M. Lin: Encapsulation of enzymes in mesoporous host materials via the nonsurfactant-templated sol-gel process. Mater. Lett. 44, 6 (2000).

    Article  CAS  Google Scholar 

  18. Y. Zhang, H. Wu, J. Li, L. Li, Y. Jiang, Y. Jiang, and Z. Jiang: Protamine-templated biomimetic hybrid capsules: Efficient and stable carrier for enzyme encapsulation. Chem. Mater. 20, 1041 (2008).

    Article  CAS  Google Scholar 

  19. P. Buisson, C. Hernandez, M. Pierre, and A.C. Pierre: Encapsulation of lipases in aerogels. J. Non-Cryst. Solids 285, 295 (2001).

    Article  CAS  Google Scholar 

  20. Y. Chen, Y. Yi, J.D. Brennan, and M.A. Brook: Development of macroporous titania monoliths using a biocompatible method. Part 1: Material fabrication and characterization. Chem. Mater. 18, 5326 (2006).

    Article  CAS  Google Scholar 

  21. M. Darder, P. Aranda, M. Hernández-Vélez, E. Manova, and E. Ruiz-Hitzky: Encapsulation of enzymes in alumina membranes of controlled pore size. Thin Solid Films 495, 321 (2006).

    Article  CAS  Google Scholar 

  22. D. Avnir, S. Braun, and M. Ottolenghi: Encapsulation of organic molecules and enzymes in sol-gel glasses. A review of novel photoactive, optical, sensing and bioactive materials, in Supermolecular Architecture: Synthetic Control in Thin Films and Solids, edited by T. Bein (ACS Symp. Ser.499, New York, NY, 1992), pp. 384–404.

    Article  CAS  Google Scholar 

  23. M. Campas and J.-L. Marty: Encapsulation of enzymes using polymers and sol-gel techniques. Methods Biotech. 22, 77 (2006).

    CAS  Google Scholar 

  24. K. Shimizu, J. Cha, G.D. Stucky, and D.E. Morse: Silicatein alpha: Cathepsin L-like protein in sponge biosilica. Proc. Natl. Acad. Sci. USA 95, 6234 (1998).

    Article  CAS  Google Scholar 

  25. N. Kroger, R. Deutzmann, and M. Sumper: Polycationic peptides from diatom biosilica that directs silica nanosphere formation. Science 286, 1129 (1999).

    Article  CAS  Google Scholar 

  26. N. Kroger, R. Deutzmann, and M. Sumper: Silica-precipitating peptides from diatoms. J. Biol. Chem. 276, 26066 (2001).

    Article  CAS  Google Scholar 

  27. M. Sumper and N. Kröger: Silica formation in diatoms: The function of long-chain polyamines and silaffins. J. Mater. Chem. 14, 2059 (2004).

    Article  CAS  Google Scholar 

  28. J.N. Cha, G.D. Stucky, D.E. Morse, and T.J. Deming: Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 403, 289 (2000).

    Article  CAS  Google Scholar 

  29. D.J. Kim, K.-B. Lee, Y.S. Chi, W.-J. Kim, H.-J. Paik, and I.S. Choi: Biomimetic formation of silica thin films by surface-initiated polymerization of 2-(dimethylamino)ethyl methacrylate and silicic acid. Langmuir 20, 7904 (2004).

    Article  CAS  Google Scholar 

  30. K.M. Roth, Y. Zhou, W. Yang, and D.E. Morse: Bifunctional small molecules are biomimetic catalysts for silica synthesis at neutral pH. J. Am. Chem. Soc. 127, 325 (2005).

    Article  CAS  Google Scholar 

  31. D.J. Belton, S.V. Patwardhan, and C.C. Perry: Spermine, spermidine and their analogues generate tailored silicas. J. Mater. Chem. 15, 4629 (2005).

    Article  CAS  Google Scholar 

  32. M.M. Tomczak, D.D. Glawe, L.F. Drummy, C.G. Lawrence, M.O. Stone, C.C. Perry, D.J. Pochan, T.J. Deming, and R.R. Naik: Polypeptide-templated synthesis of hexagonal silica platelets. J. Am. Chem. Soc. 127, 12577 (2005).

    Article  CAS  Google Scholar 

  33. S.V. Patwardhan, K. Shiba, H.C. Schröder, W.E.G. Müller, S.J. Clarson, and C.C. Perry: The interaction of ‘Silicon’ with proteins: Part 2. The role of bioinspired peptide and recombinant proteins in silica polymerization, in Science and Technology of Silicones and Silicone-Modified Materials, edited by S.J. Clarson, J.J. Fitzgerald, M.J. Owen, S.D. Smith, and M.E. Van Dyke (ACS Sym. Series, Vol. 964, Washington, DC, 2007), pp.328–347.

    Article  CAS  Google Scholar 

  34. D.J. Belton, S.V. Patwardhan, V.V. Annenkov, E.N. Danilovtseva, and C.C. Perry: From biosilicification to tailored materials: Optimizing hydrophobic domains and resistance to protonation of polyamines. Proc. Natl. Acad. Sci. USA 105, 5963 (2008).

    Article  CAS  Google Scholar 

  35. B. Singh, A. Saxena, A.K. Nigama, K. Ganesan, and P. Pandeya: Impregnated silica nanoparticles for the reactive removal of sulphur mustard from solutions. J. Hazard. Mater. 161, 933 (2009).

    Article  CAS  Google Scholar 

  36. A. Saxena, A.K. Srivastava, and B. Singh: Kinetics of adsorption of 2-CEES and HD on impregnated silica nanoparticles under static conditions. AlChE J. 55, 1236 (2009).

    Article  CAS  Google Scholar 

  37. K. Gude, V.M. Gun’ko, and J.P. Blitz: Adsorption and photocatalytic decomposition of methylene blue on surface modified silica and silica-titania. Colloids Surf. A Physicochem. Eng. Asp. 325, 17 (2008).

    Article  CAS  Google Scholar 

  38. P. Davit, G. Martra, and S. Coluccia: Photocatalytic degradation of organic compounds on TiO2 powders-FT-IR investigation of surface reactivity and mechanistic aspects. J. Jpn. Petrol. Inst. 47, 359 (2004).

    Article  CAS  Google Scholar 

  39. U.I. Gaya and A.H. Abdullah: Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. Chem. 9, 1 (2008).

    Article  CAS  Google Scholar 

  40. S. Malato, J. Blanco, D.C. Alarcón, M.I. Maldonado, P. Fernández-Ibáñez, and W. Gernjak: Photocatalytic decontamination and disinfection of water with solar collectors. Catal. Today 122, 137 (2007).

    Article  CAS  Google Scholar 

  41. H.R. Luckarift, M.B. Dickerson, K.H. Sandhage, and J.C. Spain: Rapid, room-temperature synthesis of antimicrobial bionanocomposites of lysozyme with amorphous silica or titania. Small 2, 640 (2006).

    Article  CAS  Google Scholar 

  42. K.E. Cole and A.M. Valentine: Spermidine and spermine catalyze the formation of nanostructured titanium oxide. Biomacromolecules 8, 1641 (2007).

    Article  CAS  Google Scholar 

  43. S.L. Sewell and D.W. Wright: Biomimetic synthesis of titanium dioxide utilizing the R5 peptide derived from Cylindrotheca fusiformis. Chem. Mater. 18, 3108 (2006).

    Article  CAS  Google Scholar 

  44. V. Bansal, D. Rautaray, A. Bharde, K. Ahire, A. Sanyal, A. Ahmad, and M. Sastry: Fungus-mediated biosynthesis of silica and titania particles. J. Mater. Chem. 15, 2583 (2005).

    Article  CAS  Google Scholar 

  45. D. Zhang and L. Qi: Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes. Chem. Commun. (21), 2735 (2005).

    Article  CAS  Google Scholar 

  46. J.L. Sumerel, W. Yang, D. Kisailus, J.C. Weaver, J.H. Choi, and D.E. Morse: Biocatalytically templated synthesis of titanium dioxide. Chem. Mater. 15, 4804 (2003).

    Article  CAS  Google Scholar 

  47. Y. Jiang, D. Yang, L. Zhang, L. Li, Q. Sun, Y. Zhang, J. Li, and Z. Jiang: Biomimetic synthesis of titania nanoparticles induced by protamine. Dalton Trans. 31, 4165 (2008).

    Article  CAS  Google Scholar 

  48. Y. Jiang, Q. Sun, Z. Jiang, L. Zhang, J. Li, L. Li, and X. Sun: The improved stability of enzyme encapsulated in biomimetic titania particles. Mater. Sci. Eng. C 29, 328 (2009).

    Article  CAS  Google Scholar 

  49. A. Imhof: Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells. Langmuir 17, 3579 (2001).

    Article  CAS  Google Scholar 

  50. H. Li, C.-S. Ha, and I. Kim: Facile fabrication of hollow silica and titania microspheres using plasma-treated polystyrene spheres as sacrificial templates. Langmuir 24, 10552 (2008).

    Article  CAS  Google Scholar 

  51. Q.X. Jia, T.M. McCleskey, A.K. Burrell, Y. Lin, G.E. Collis, H. Wang, A.D.Q. Li, and S.R. Foltyn: Polymer-assisted deposition of metal-oxide films. Nat. Mater. 3, 529 (2004).

    Article  CAS  Google Scholar 

  52. M. Suzuki, Y. Nakajima, T. Sato, H. Shirai, and K. Hanabusa: Fabrication of TiO2 using L-lysine-based organogelators as organic templates: Control of the nanostructures. Chem. Commun. (4), 377 (2006).

    Article  Google Scholar 

  53. M.J. Pender, L.A. Sowards, J.D. Hartgerink, M.O. Stone, and R.R. Naik: Peptide-mediated formation of single-wall carbon nanotube composites. Nano Lett. 6, 40 (2006).

    Article  CAS  Google Scholar 

  54. M.B. Dickerson, S.E. Jones, Y. Cai, G. Ahmad, R.R. Naik, N. Kröger, and K.H. Sandhage: Identification and design of peptides for the rapid, high-yield formation of nanoparticulate TiO2 from aqueous solutions at room temperature. Chem. Mater. 20, 1578 (2008).

    Article  CAS  Google Scholar 

  55. D. Kisailus, Q. Truong, Y. Amemiya, J.C. Weaver, and D.E. Morse: Self-assembled bifunctional surface mimics and enzymatic and templating protein for the synthesis of a metal oxide semiconductor. Proc. Natl. Acad. Sci. USA 103, 5652 (2006).

    Article  CAS  Google Scholar 

  56. D. Zhang, D. Yang, H. Zhang, C. Lu, and L. Qi: Synthesis and photocatalytic properties of hollow microparticles of titania and titania/carbon composites templated by Sephadex G-100. Chem. Mater. 18, 3477 (2006).

    Article  CAS  Google Scholar 

  57. L.A. Mounter, R.F. Baxter, and A. Chanutin: Dialkylfluorophosphatases of microorganisms. J. Biol. Chem. 215, 699 (1955).

    CAS  Google Scholar 

  58. F.C.G. Hoskin: Diisopropylphosphorofluoridate and tabun: Enzymatic hydrolysis and nerve function. Science 172, 1243 (1971).

    Article  CAS  Google Scholar 

  59. F.C.G. Hoskin, J.E. Walker, and R. Stote: Degradation of nerve gases by CLECS and cells: Kinetics of heterogenous systems. Chem. Biol. Interact. 119, 439 (1999).

    Article  Google Scholar 

  60. M. Faisal, M. Abu Tariq, and M. Muneer: Photocatalysed degradation of two selected dyes in UV-irradiated aqueous suspensions of titania. Dyes Pigments 72, 233 (2005).

    Article  CAS  Google Scholar 

  61. N. Kroger, R. Deutzmann, and M. Sumper: Polycationic peptides from Diatom biosilica that direct silica nanosphere formation. Science 286, 1129 (1999).

    Article  CAS  Google Scholar 

  62. T. Coradin and P.J. Lopez: Biogenic silica patterning: Simple chemistry or subtle biology? ChemBioChem 3, 1 (2003).

    Google Scholar 

  63. P.J. Lopez, C. Gautier, J. Livage, and T. Coradin: Mimicking biogenic silica nanostructures formation. Curr. Nanosci. 1, 73 (2005).

    Article  CAS  Google Scholar 

  64. A.L. Patterson: The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939).

    Article  CAS  Google Scholar 

  65. N. Jagtap, M. Bhagwat, P. Awati, and V. Ramaswamy: Characterization of nanocrystalline anatase titania: An in situ HTXRD study. Thermochim. Acta 427, 37 (2005).

    Article  CAS  Google Scholar 

  66. J. Hartleib and H. Ruterjans: High-yield expression, purification, and characterization of the recombinant Diisopropylfluorophosphatase from Loligo vulgaris. Protein Expression Purif. 21, 210 (2001).

    Article  CAS  Google Scholar 

  67. F.C.G. Hoskin and A.H. Roush: Hydrolysis of nerve gas by squid-type diisopropyl phosphorofluoridate hydrolyzing enzyme on agarose resin. Science 215, 1255 (1982).

    Article  CAS  Google Scholar 

  68. F.C.G. Hoskin: An organophosphorus detoxifying enzyme unique to squid, in Squid as Experimental Animals, edited by D.E. Gilbert, W.J. Adelman, and J.M. Arnold (Plenum Press, New York, 1990), pp. 469–480.

    Chapter  Google Scholar 

  69. J. Hartleib and H. Ruterjans: Insights into the reaction mechanism of the diisopropyl fluorophosphatase from Loligo vulgaris by means of kinetic studies, chemical modification and site-directed mutagenesis. Biochim. Biophys. Acta 1546, 312 (2001).

    Article  CAS  Google Scholar 

  70. G.F. Drevon, K. Danielmeier, W. Federspiel, D.B. Stolz, D.A. Wicks, P.C. Yu, and A.J. Russell: High-activity enzyme-polyurethane coatings. Biotechnol. Bioeng. 79, 785 (2002).

    Article  CAS  Google Scholar 

  71. G.F. Drevon, J. Hartleib, E. Scharff, H. Rüterjans, and A.J. Russell: Thermoinactivation of diisopropylfluorophosphatase- containing polyurethane polymers. Biomacromolecules 2, 664 (2001).

    Article  CAS  Google Scholar 

  72. H.R. Luckarift, M.B. Dickerson, K.H. Sandhage, and J.C. Spain: Rapid, room-temperature synthesis of antibacterial bionanocomposites of Lysozyme with amorphous Silica and Titania. Small 2, 640 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Defense Threat Reduction Agency. The authors acknowledge Dr. John Walker for his assistance with the DFPase activity assay and Dr. Lian Li and Professor Jayant Kumar from the University of Massachusetts-Lowell for their assistance with x-ray diffraction of the titania-coated Sephadex beads.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaun Filocamo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filocamo, S., Stote, R., Ziegler, D. et al. Entrapment of DFPase in titania coatings from a biomimetically derived method. Journal of Materials Research 26, 1042–1051 (2011). https://doi.org/10.1557/jmr.2011.33

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.33

Navigation