Skip to main content
Log in

Mild hydrothermal synthesis of γ-MnO2 nanostructures and their phase transformation to α-MnO2 nanowires

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Urchin-like γ-MnO2 nanostructures, composed of nanowires with diameters in the range 40–70 nm were prepared through the direct reaction between MnSO4 and KClO3 via a mild hydrothermal route. Reaction time and temperature were found to influence both the phase and morphology of as-prepared products. For longer reaction times, the initially formed γ-phase transformed to α-MnO2 nanowires along with the loss of urchin-like morphology. Powder x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetry and differential scanning calorimetry were used to characterize the as-prepared products. On the basis of XRD patterns and SEM images, a possible growth mechanism for the time-dependant morphological evolution of various MnO2 nanostructures has been suggested and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. K. Ramesh, L. Chen, F. Chen, Y. Liu, Z. Wang, and Y.-F. Han: Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts. Catal. Today 131, 477 (2008).

    Article  CAS  Google Scholar 

  2. Y.-H. Bai, Y. Du, J.-J. Xu, and H.-Y. Chen: Choline biosensors based on a bi-electrocatalytic property of MnO2 nanoparticles modified electrodes to H2O2. Electrochem. Commun. 9, 2611 (2007).

    Article  CAS  Google Scholar 

  3. F. Cheng, J. Zhao, W. Song, C. Li, H. Ma, J. Chen, and P. Shen: Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 45, 2038 (2006).

    Article  CAS  Google Scholar 

  4. B. Li, G. Rong, Y. Xie, L. Huang, and C. Feng: Low-temperature synthesis of α-MnO2 hollow urchins and their application in rechargeable Li+ batteries. Inorg. Chem. 45, 6404 (2006).

    Article  CAS  Google Scholar 

  5. L. Li, Y. Chu, Y. Liu, and L. Dong: Synthesis and shape evolution of novel cuniform-like MnO2 in aqueous solution. Mater. Lett. 61, 1609 (2007).

    Article  CAS  Google Scholar 

  6. M. Wei, Y. Konishi, H. Zhou, H. Sugihara, and H. Arakawa: Synthesis of single-crystal manganese dioxide nanowires by a soft chemical process. Nanotechnology 16, 245 (2005).

    Article  CAS  Google Scholar 

  7. Q.-H. Zhang, S. Sun, S. Li, H. Jiang, and J.-G. Yu: Adsorption of lithium ions on novel nanocrystal MnO2. Chem. Eng. Sci. 62, 4869 (2007).

    Article  CAS  Google Scholar 

  8. Y.C. Zhang, T. Qiao, X.Y. Hu, and W.D. Zhou: Simple hydrothermal preparation of γ-MnOOH nanowires and their low-temperature thermal conversion to β-MnO2 nanowires. J. Cryst. Growth 280, 652 (2005).

    Article  CAS  Google Scholar 

  9. M. Sugantha, P.A. Ramakrishnan, A.M. Hermann, C.P. Warmsingh, and D.S. Ginley: Nanostructured MnO2 for Li batteries. Int. J. Hydrogen Energy 28, 597 (2003).

    Article  CAS  Google Scholar 

  10. L.-X. Yang, Y.-J. Zhu, W.-W. Wang, H. Tong, and M.-L. Ruan: Synthesis and formation mechanism of nanoneedles and nanorods of manganese oxide octahedral molecular sieve using an ionic liquid. J. Phys. Chem. B 110, 6609 (2006).

    Article  CAS  Google Scholar 

  11. W. Xiao, H. Xia, J.Y.H Fuh, and L. Lu: Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties. J. Power Sources 193, 935 (2009).

    Article  CAS  Google Scholar 

  12. H.Y. Lee and J.B. Goodenough: Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144, 220 (1999).

    Article  CAS  Google Scholar 

  13. S. Chou, F. Cheng, and J. Chen: Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films. J. Power Sources 162, 727 (2006).

    Article  CAS  Google Scholar 

  14. J. Xie, X. Li, Z.H. Yu, L.J. Zhang, F. Li, and D.G. Xia: Synthesis and study of λ-MnO2 supported Pt nanocatalyst for methanol electro-oxidation. Rare Met. 29, 187 (2010).

    Article  CAS  Google Scholar 

  15. D.W. Yan and C.R. Wang: The controllable syntheses and electrochemical study of 1-dimensional nanowires, 2-dimensional nanoplatelets, and 3-dimensional nanotowers of MnO2. J. Nanosci. Nanotechnol. 7, 2487 (2007).

    Article  CAS  Google Scholar 

  16. Y.P. Li, X.Q. Zhou, H.J. Zhou, Z.R. Shen, and T.H. Chen: Hydrothermal preparation of nanostructured MnO2 and morphological and crystalline evolution. Front. Chem. China 3, 128 (2007).

    Article  Google Scholar 

  17. N.C. Xu, Z.H. Liu, X.R. Ma, S.F. Qiao, and J.Q. Yuan: Controlled synthesis and characterization of layered manganese oxide nanostructures with different morphologies. J. Nanopart. Res. 11, 1107 (2009).

    Article  CAS  Google Scholar 

  18. H. Xia, W. Xiao, M.O. Lai, and L. Lu: Facile synthesis of novel nanostructured MnO2 thin films and their application in supercapacitors. Nanoscale Res. Lett. 4, 1035 (2009).

    Article  CAS  Google Scholar 

  19. A. Ul Islam, R. Islam, and K.A. Khan: Studies on the thermoelectric effect in semiconducting MnO2 thin films. J. Mater. Sci.- Mater. Electron. 16, 203 (2005).

    Article  CAS  Google Scholar 

  20. X. Wang and Y. Li: Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124, 2880 (2002).

    Article  CAS  Google Scholar 

  21. X.C. Song, Y. Zhao, and Y.F. Zheng: Synthesis of MnO2 nanostructures with sea urchin shapes by a sodium dodecyl sulfate-assisted hydrothermal process. Cryst. Growth Des. 7, 159 (2007).

    Article  CAS  Google Scholar 

  22. M. Zhou, X. Zhang, J. Wei, S. Zhao, L. Wang, and B. Feng: Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures. J. Phys. Chem. C 115, 1398 (2010).

    Article  CAS  Google Scholar 

  23. Z. Zhang and J. Mu: Hydrothermal synthesis of γ-MnOOH nanowires and α-MnO2 sea urchin-like clusters. Solid State Commun. 141, 427 (2007).

    Article  CAS  Google Scholar 

  24. M. Xu, L. Kong, W. Zhou, and H. Li: Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J. Phys. Chem. C 111, 19141 (2007).

    Article  CAS  Google Scholar 

  25. Y. Liu, M. Zhang, J. Zhang, and Y. Qian: A simple method of fabricating large-area α-MnO2 nanowires and nanorods. J. Solid State Chem. 179, 1757 (2006).

    Article  CAS  Google Scholar 

  26. X.F. Shen, Y.S. Ding, J.C. Hanson, M. Aindow, and S.L. Suib: In situ synthesis of mixed-valent manganese oxide nanocrystals: An in situ synchrotron x-ray diffraction study. J. Am. Chem. Soc. 128, 4570 (2006).

    Article  CAS  Google Scholar 

  27. D. Portehault, S. Cassaignon, E. Baudrin, and J.P. Jolivet: Morphology control of cryptomelane type MnO2 nanowires by soft chemistry. Growth mechanisms in aqueous medium. Chem. Mater. 19, 5410 (2007).

    Article  CAS  Google Scholar 

  28. H.G. Wang, Z.G. Lu, D. Qian, Y.J. Li, and W. Zhang: Single-crystal α-MnO2 nanorods: Synthesis and electrochemical properties. Nanotechnology 18, 115616 (2007).

    Article  CAS  Google Scholar 

  29. P. Umek, A. Gloter, M. Pregelj, R. Dominko, M. Jagodic, Z. Jaglicic, A. Zimina, M. Brzhezinskaya, A. Potocnik, C. Filipic, A. Levstik, and D. Arcon: Synthesis of 3D hierarchical self-assembled microstructures formed from α-MnO2 nanotubes and their conducting and magnetic properties. J. Phys. Chem. C 113, 14798 (2009).

    Article  CAS  Google Scholar 

  30. P. Yu, X. Zhang, D.L. Wang, L. Wang, and Y.W. Ma: Shape-controlled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors. Cryst. Growth Des. 9, 528 (2009).

    Article  CAS  Google Scholar 

  31. J. Wu, H. Zhang, X. Ma, J. Li, F. Sun, N. Du, and D. Yang: Synthesis and characterization of single crystalline MnOOH and MnO2 nanorods by means of the hydrothermal process assisted with CTAB. Mater. Lett. 60, 3895 (2006).

    Article  CAS  Google Scholar 

  32. X. Wang and Y. Li: Rational synthesis of α-MnO2 single-crystal nanorods. Chem. Commun. 7, 764 (2002).

    Article  CAS  Google Scholar 

  33. V. Subramanian, H.W. Zhu, R. Vajtai, P.M. Ajayan, and B.Q. Wei: Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 109, 20207 (2005).

    Article  CAS  Google Scholar 

  34. L.P. Li, Y.Z. Pan, L.J. Chen, and G.S. Li: One-dimensional α-MnO2: Trapping chemistry of tunnel structures, structural stability, and magnetic transitions. J. Solid State Chem. 180, 2896 (2007).

    Article  CAS  Google Scholar 

  35. B.X. Li, G.X. Rong, Y. Xie, L.F. Huang, and C.Q. Feng: Low-temperature synthesis of α-MnO2 hollow urchins and their application in rechargeable Li+ batteries. Inorg. Chem. 45, 6404 (2006).

    Article  CAS  Google Scholar 

  36. A.M.A Hashem: Preparation, characterization and electrochemical performance of γ-MnO2 and LiMn2O4 as cathodes for lithium batteries. Ionics 10, 206 (2004).

    Article  CAS  Google Scholar 

  37. Z. Jia, D. Yuping, J. Hui, L. Xiaogang, and L. Shunhua: The morphology and electromagnetic properties of MnO2 obtained in 8 T high magnetic field. J. Cryst. Growth 312, 2788 (2010).

    Article  CAS  Google Scholar 

  38. C.Z. Wu, Y. Xie, D. Wang, J. Yang, and T.W. Li: Selected-control hydrothermal synthesis of γ-MnO2 3D nanostructures. J. Phys. Chem. B 107, 13583 (2003).

    Article  CAS  Google Scholar 

  39. X. Wang and Y.D. Li: Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chemistry 9, 300 (2003).

    Article  Google Scholar 

  40. X. Wang and Y.D. Li: Solution-based routes to transition-metal oxide one-dimensional nanostructures. Pure Appl. Chem. 78, 45 (2006).

    Article  CAS  Google Scholar 

  41. Y.-F. Shen, S.L. Suib, and C.-L. O’Young: Effects of inorganic cation templates on octahedral molecular sieves of manganese oxide. J. Am. Chem. Soc. 116, 11020 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Central Diagnostic Laboratories (CDL), Pakistan Institute of Nuclear Science and Technology, for providing the TG-DSC facility. Financial support from the Higher Education Commission of Pakistan for Ph.D. fellowship (Y. Khan) is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqoob Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, Y., Durrani, S.K., Mehmood, M. et al. Mild hydrothermal synthesis of γ-MnO2 nanostructures and their phase transformation to α-MnO2 nanowires. Journal of Materials Research 26, 2268–2275 (2011). https://doi.org/10.1557/jmr.2011.138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.138

Navigation