Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-03T13:50:02.769Z Has data issue: false hasContentIssue false

Photocurrent generation of heterostructured films composed of donor–acceptor and donor–insulator networks on indium-tin-oxide electrodes

Published online by Cambridge University Press:  19 January 2011

Katsuhiko Kanaizuka
Affiliation:
Department of Chemistry, Faculty of Science, Toho University, Funabashi 274-8510, Japan; and Kawamura Institute of Chemical Research, Sakura 285-0078, Japan
Shinji Kato*
Affiliation:
Kawamura Institute of Chemical Research, Sakura 285-0078, Japan
Hiroshi Moriyama*
Affiliation:
Department of Chemistry, Faculty of Science, Toho University, Funabashi 274-8510, Japan
Chyongjin Pac
Affiliation:
Department of Chemistry, Faculty of Science, Toho University, Funabashi 274-8510, Japan
*
b)Address all correspondence to these authors. e-mail: kato@kicr.or.jp
Get access

Abstract

The heterocomponent films of polypyridine ruthenium(II) complexes and methyl viologen derivatives, and polypyridine ruthenium(II) complexes and alkyl chain derivatives have been successfully obtained using a layer-by-layer fabrication method. We determined their photocurrent generation properties and noted that the photocurrent generation strongly depended on the inner layer. A higher photocurrent generation in the donor–acceptor film was obtained than in a single-component film of the chromophore.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kanaizuka, K., Haruki, R., Sakata, O., Yoshimoto, M., Akita, Y., and Kitagawa, H.: Construction of highly oriented crystalline surface coordination polymers composed of copper dithiooxamide complexes. J. Am. Chem. Soc. 130, 15778 (2008).CrossRefGoogle ScholarPubMed
2.Kato, S.: Designing interfaces that function to facilitate charge injection in organic light-emitting diodes. J. Am. Chem. Soc. 127, 11538 (2005).CrossRefGoogle ScholarPubMed
3.Matsuo, Y., Kanaizuka, K., Matsuo, K., Zhong, Y-W., Nakae, T., and Nakamura, E.: Photocurrent-generating properties of organometallic fullerene molecules on an electrode. J. Am. Chem. Soc. 130, 5016 (2008).CrossRefGoogle ScholarPubMed
4.Ulman, A.: An Introduction to Ultrathin Organic Films: From Langmuir–Blodgett to Self-Assembly (Academic Press, San Diego, CA, 1991).Google Scholar
5.Haga, M.a., Takasugi, T., Tomie, A., Ishizuya, M., Yamada, Y., Hossain, M.D., and Inoue, M.: Molecular design of a proton-induced molecular switch based on rod-shaped Ru dinuclear complexes with bis-tridentate 2,6-bis(benzimidazol-2-yl)pyridine derivatives. Dalton Trans. 2069 (2003).CrossRefGoogle Scholar
6.Abe, M., Michi, T., Sato, A., Kondo, T., Zhou, W., Ye, S., Uosaki, K., and Sasaki, Y.: Electrochemically controlled layer-by-layer deposition of metal-cluster molecular multilayers on gold. Angew. Chem. Int. Ed. 42, 2912 (2003).CrossRefGoogle ScholarPubMed
7.Maskus, M. and Abruña, H.D.: Synthesis and characterization of redox-active metal complexes sequentially self-assembled onto gold electrodes via a new thiol-terpyridine ligand. Langmuir 12, 4455 (1996).CrossRefGoogle Scholar
8.Shekhah, O., Wang, H., Kowarik, S., Schreiber, F., Paulus, M., Tolan, M., Sternemann, C., Evers, F., Zacher, D., Fischer, A.R., and Wöll, C.: Step-by-step for the synthesis of metal–organic frameworks. J. Am. Chem. Soc. 129, 15118 (2007).CrossRefGoogle ScholarPubMed
9.Altman, M., Zenkina, O., Evmenenko, G., Dutta, P., and van der Boom, M.E.: Molecular assembly of a 3-D-ordered multilayer. J. Am. Chem. Soc. 130, 5040 (2008).CrossRefGoogle Scholar
10.Kanaizuka, K., Murata, M., Nishimori, Y., Mori, I., Nishio, K., Masuda, H., and Nishihara, H.: Stepwise preparation of linear π-conjugated bis(terpyridine)metal polymer chains at gold surface. Chem. Lett. 34, 534 (2005).CrossRefGoogle Scholar
11.Liang, Y. and Schmehl, R.H.: Coordination chemistry at a surface: Polymetallic complexes prepared on quartz by alternate deposition of iron(II) and ruthenium(II) centres. J. Chem. Soc. Chem. Commun. 1007 (1995).CrossRefGoogle Scholar
12.Haga, M.a., Kobayashi, K., and Terada, K.: Fabrication and functions of surface nanomaterials based on multilayered or nanoarrayed assembly of metal complexes. Coord. Chem. Rev. 251, 2688 (2007).CrossRefGoogle Scholar
13.Nishihara, H., Kanaizuka, K., Nishimori, Y., and Yamanoi, Y.: Construction of redox- and photo-functional molecular systems on electrode surface for application to molecular devices. Coord. Chem. Rev. 251, 2674 (2007).CrossRefGoogle Scholar
14.Nishimori, Y., Kanaizuka, K., Murata, M., and Nishihara, H.: Synthesis of molecular wires of linear and branched bis(terpyridine)complex oligomers and electrochemical observation of through-bond redox conduction. Chem. Asian J. 2, 367 (2007).CrossRefGoogle ScholarPubMed
15.Kanaizuka, K., Kato, S., Moriyama, H., and Pac, C.: Layer-by-layer molecular organization of polypyridine ruthenium(II) complexes on glass plates. Chem. Lett. 35, 1036 (2006).CrossRefGoogle Scholar
16.Kanaizuka, K., Kato, S., Moriyama, H., and Pac, C.: Electron transfer in tris(bispyridine)ruthenium(II) complex films on ITO. Chem. Lett. 36, 178 (2007).CrossRefGoogle Scholar
17.Kanaizuka, K., Kato, S., Moriyama, H., and Pac, C.: Photophysical and electrochemical behavior of thin solid films based on a three-dimensional ruthenium complex network. Res. Chem. Intermed. 33, 91 (2007).CrossRefGoogle Scholar
18.Katz, H.E., Scheller, G., Putvinski, T.M., Schilling, M.L., Wilson, W.L., and Chidsey, C.E.D.: Polar orientation of dyes in robust multilayers by zirconium phosphate–phosphate interlayers. Science 254, 1485 (1991).CrossRefGoogle Scholar
19.Li, D., Ratner, M.A., Marks, T.J., Zhang, C., Yang, J., and Wong, G.K.: Chromophoric self-assembled multilayers. Organic superlattice approach to thin-film nonlinear optical materials. J. Am. Chem. Soc. 112, 7389 (1990).CrossRefGoogle Scholar
20.Wrighton, M.S.: Surface functionalization of electrodes with molecular reagents. Science 231, 32 (1986).CrossRefGoogle ScholarPubMed
21.Calabrese, G.S., Buchanan, R.M., and Wrighton, M.S.: Electrochemical behavior of a surface-confined naphthoquinone derivative. Electrochemical and photoelectrochemical reduction of oxygen to hydrogen peroxide at derivatized electrodes. J. Am. Chem. Soc. 104, 5786 (1982).CrossRefGoogle Scholar
22.Chen, K., Caldwell, W.B., and Mirkin, C.A.: Fullerene self-assembly onto (MeO)3Si(CH2)3NH2-modified oxide surface. J. Am. Chem. Soc. 115, 1193 (1993).CrossRefGoogle Scholar
23.Simon, R.A., Ricco, A.J., and Wrighton, M.S.: Synthesis and characterization of a new surface derivatizing reagent to promote the adhesion of polypyrrole films to n-type silicon photoanode: N-(3-(trimethoxysilyl)pyrrole. J. Am. Chem. Soc. 104, 2031 (1982).CrossRefGoogle Scholar
24.Denisevich, P., Willman, K.W., and Murray, R.W.: Unidirectional current flow and charge state trapping at redox polymer interfaces on bilayer electrodes: Principles, experimental demonstration, and theory. J. Am. Chem. Soc. 103, 4727 (1981).CrossRefGoogle Scholar
25.Joachim, C., Gimzewski, J.K., and Aviram, A.: Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541 (2000).CrossRefGoogle ScholarPubMed
26.Gao, F.G. and Bard, A.J.: Solid-state organic light-emitting diodes based on tris(2,2′-bipyridine)ruthenium(II) complexes. J. Am. Chem. Soc. 122, 7426 (2000).CrossRefGoogle Scholar
27.Yasutomi, S., Morita, T., and Kimura, S.: PH-controlled switching of photocurrent direction by self-assembled monolayer of helical peptides. J. Am. Chem. Soc. 127, 14564 (2005).CrossRefGoogle ScholarPubMed
28.Richter, M.M.: Electrochemiluminescence. Chem. Rev. 104, 3003 (2004).CrossRefGoogle ScholarPubMed