Skip to main content
Log in

Structural and photoluminescence properties of laser processed ZnO/carbon nanotube nanohybrids

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO)/carbon-nanotubular-structures (CNTS) nanohybrids were grown using a three-step laser process. First, an ultraviolet (UV) laser (KrF) was used to deposit Co/Ni catalyst nanoparticles (NP) directly onto SiO2/Si substrates. Second, a random network of CNTS was grown onto these Co/Ni-catalyzed substrates by using the UV-laser ablation method. Finally, ZnO nanostructures were grown onto the CNTS template by means of the CO2 laser-induced chemical liquid deposition technique. While the laterally grown CNTS mainly consist of nanotube bundles featuring a high aspect ratio (diameter of ~20 nm and length of up to several microns), the ZnO nanostructures were found to consist of various morphologies including nanorods, polypods, and nanoparticles with a size as small as 2 nm. The ZnO/CNTS nanohybrids were found to exhibit a polychromatic photoluminescent (PL) emission, at room temperature, comprising a narrow near-UV band centered around 390 nm, a broad visible to near infrared band (500–900 nm), and a relatively weak emission band centered around 1000 nm. These PL results are compared to those of individual components (CNTS and ZnO) and discussed in terms of carbon defect density and possible charge transfer between the ZnO nanocrystals and the carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, and M. Nath: Nanotubes. Chem. Phys. Chem. 2, 78 (2001).

    Article  CAS  Google Scholar 

  2. S. Fullam, D. Cottel, H. Rensmo, and D. Fitzmaurice: Carbon nanotube templated self-assembly and thermal processing of gold nanowires. Adv. Mater. 12, 1430 (2000).

    Article  CAS  Google Scholar 

  3. M. Endo, Y.A. Kim, M. Ezaka, K. Osada, T. Yanagisawa, T. Hayashi, M. Terrones, and M.S. Dresselhaus: Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofibers. Nano Lett. 3, 723 (2003).

    Article  CAS  Google Scholar 

  4. W.Q. Han and A. Zettl: Coating single-walled carbon nanotubes with tin oxide. Nano Lett. 3, 681 (2003).

    Article  CAS  Google Scholar 

  5. K. Byrappa, A.S. Dayananda, C.P. Sajan, B. Basavalingu, M.B. Shayan, K. Soga, and M. Yoshimura: Hydrothermal preparation of ZnO/CNT and TiO2/CNT composites and their photocatalytic applications. J. Mater. Sci. 43, 2348 (2008).

    Article  CAS  Google Scholar 

  6. M. Baibarac, I. Baltog, S. Lefrant, J.Y. Mevellec, and M. Husanua: Vibrational and photoluminescence properties of composites based on zinc oxide and single-walled carbon nanotubes. Physica E 40, 2556 (2008).

    Article  CAS  Google Scholar 

  7. D. Banerjee, S.H. Jo, and Z.F. Ren: Enhanced field emission of ZnO nanowires. Adv. Mater. 16, 2028 (2004).

    Article  CAS  Google Scholar 

  8. F. Vietmeyer, B. Seger, and P.V. Kamat: Anchoring ZnO particles on functionalized single wall carbon nanotubes. Excited state interactions and charge collection. Adv. Mater. 19, 2935 (2007).

    Article  CAS  Google Scholar 

  9. S. Bae, H. Seo, H. Choi, and J. Park: Heterostructures of ZnO nanorods with various one-dimensional nanostructures. J. Phys. Chem. B 108, 12318 (2004).

    Article  CAS  Google Scholar 

  10. R.H. Baughman, A.A. Zakhidov, and _deW.A. Heer: Carbon nanotubesThe route toward applications. Science 297, 787 (2002).

    Article  CAS  Google Scholar 

  11. P.M. Ajayan and O.Z. Zhou: Carbon nanotubes. Top. Appl. Phys. 80, 391 (2001).

    Article  CAS  Google Scholar 

  12. J. Liu, X. Li, and L. Dai: Water-assisted growth of aligned carbon nanotube-ZnO heterojunction arrays. Adv. Mater. 18, 1740 (2006).

    Article  CAS  Google Scholar 

  13. M.A. El Khakani and J-H Yi: The nanostructure and electrical properties of SWNT bundle networks grown by an all-laser growth process for nanoelectronic device applications. Nanotechnology 15, S534 (2004).

    Article  Google Scholar 

  14. M.A. KhakaniEl, J.H. Yi, and B. Assa: Lateral growth of single wall carbon nanotubes on various substrates by means of an alllaser synthesis approach. Diamond Relat. Mater. 15, 1064 (2006).

    Article  Google Scholar 

  15. C. Fauteux, M.A. KhakaniEl, J. Pegna, and D. Therriault: Influence of solution parameters for the fast growth of ZnO nanostructures by laser-induced chemical liquid deposition. Appl. Phys. A 94, 819 (2008).

    Article  Google Scholar 

  16. N. Braidy, M.A. KhakaniEl, and G.A. Botton: Carbon nanotubular structures synthesis by means of ultraviolet laser ablation. J. Mater. Res. 17, 2189 (2002).

    Article  CAS  Google Scholar 

  17. X. Wang, B. Xia, X. Zhu, J. Chen, S. Qiu, and J. Li: Controlled modification of multiwalled carbon nanotubes with ZnO nanostructures. J. Solid State Chem. 181, 822 (2008).

    Article  CAS  Google Scholar 

  18. A. Wei, X.W. Sun, C.X. Xu, Z.L. Dong, Y. Yang, S.T. Tan, and W. Huang: Growth mechanism of tubular ZnO formed in aqueous solution. Nanotechnology 17, 1740 (2006).

    Article  CAS  Google Scholar 

  19. S. Bandow, S. Asaka, Y. Saito, A.M. Rao, L. Grigorian, E. Richter, and P.C. Eklund: Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett. 80, 3779 (1998).

    Article  CAS  Google Scholar 

  20. W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, and S. Xie: Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor. Appl. Phys. Lett. 70, 2684 (1997).

    Article  CAS  Google Scholar 

  21. J.F. Scott: UV resonant Raman scattering in ZnO. Phys. Rev. B 2, 1209 (1970).

    Article  Google Scholar 

  22. Y. Huang, M. Liu, Z. Li, Y. Zeng, and S. Liu: Raman spectroscopy study of ZnO-based ceramic films fabricated by novel sol-gel process. Mater. Sci. Eng., B 97, 111 (2003).

    Article  Google Scholar 

  23. J.W. Jang, C.E. Lee, S.C. Lyu, T.J. Lee, and C.J. Lee: Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Appl. Phys. Lett. 84, 2877 (2004).

    Article  CAS  Google Scholar 

  24. M. Futsuhara, K. Yoshioka, and O. Takai: Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering. Thin Solid Films 322, 274 (1998).

    Article  CAS  Google Scholar 

  25. L. Fu, Z. Liu, Y. Liu, B. Han, P. Hu, L. Cao, and D. Zhu: Beaded cobalt oxide nanoparticles along carbon nanotubes: Towards more highly integrated electronic devices. Adv. Mater. 17, 217 (2005).

    Article  CAS  Google Scholar 

  26. Y. Shan and L. Gao: Synthesis and characterization of phase controllable ZrO2carbon nanotube nanocomposites. Nanotechnology 16, 625 (2005).

    Article  CAS  Google Scholar 

  27. N.I. Kovtyukhova, T.E. Mallouk, L. Pan, and E.C. Dickey: Individual single-walled nanotubes and hydrogels made by oxidative exfoliation of carbon nanotube ropes. J. Am. Chem. Soc. 125, 9761 (2003).

    Article  CAS  Google Scholar 

  28. M. Liu, Y. Yang, T. Zhu, and Z. Liu: Chemical modification of single-walled carbon nanotubes with peroxytrifluoroacetic acid. Carbon 43, 1470 (2005).

    Article  CAS  Google Scholar 

  29. K. Matsuda, Y. Kanemitsu, K. Irie, T. Saiki, and T. Someya: Photoluminescence intermittency in an individual single-walled carbon nanotube at room temperature. Appl. Phys. Lett. 86, 123116 (2005).

    Article  Google Scholar 

  30. J. Guo, C. Yang, Z.M. Li, M. Bai, H.J. Liu, G.D. Li, E.G. Wang, C.T. Chan, Z.K. Tang, W.K. Ge, and X. Xiao: Efficient visible photoluminescence from carbon nanotubes in zeolite templates. Phys. Rev. Lett. 93, 017402 (2004).

    Article  Google Scholar 

  31. M.E. Brennan, J.N. Coleman, A. Drury, B. Lahr, T. Kobayashi and W.J. Blau: Nonlinear photoluminescence from van Hove singularities in multiwalled carbon nanotubes. Opt. Lett. 28(4), 266 (2003).

    Article  CAS  Google Scholar 

  32. A.J. Henley, J.D. Carey, and S.R.P. Silva: Room temperature photoluminescence from nanostructured amorphous carbon. Appl. Phys. Lett. 85, 6236 (2004).

    Article  CAS  Google Scholar 

  33. Y. Lin, B. Zhou, R.B. Martin, K.B. Henbest, B.A. Harruff, J.E. Riggs, Z-X Guo, L.F. Allard, and Y-P Sun: Visible luminescence of carbon nanotubes and dependence on functionalization. J. Phys. Chem. B 109, 14779 (2005).

    Article  CAS  Google Scholar 

  34. R. Zhang, L. Fan, Y. Fang, and S. Yang: Electrochemical route to the preparation of highly dispersed composites of ZnO/carbon nanotubes with significantly enhanced electrochemiluminescence from ZnO. J. Mater. Chem. 18, 4964 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to My A. El Khakani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aïssa, B., Fauteux, C., El Khakani, M.A. et al. Structural and photoluminescence properties of laser processed ZnO/carbon nanotube nanohybrids. Journal of Materials Research 24, 3313–3320 (2009). https://doi.org/10.1557/jmr.2009.0421

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0421

Navigation