Skip to main content
Log in

Transmission electron microscopy study of the deformation behavior of Cu/Nb and Cu/Ni nanoscale multilayers during nanoindentation

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoscale metallic multilayers, comprising two sets of materials—Cu/Nb and Cu/Ni—were deposited in two different layer thicknesses—nominally 20 and 5 nm. These multilayer samples were indented, and the microstructural changes under the indent tips were studied by extracting samples from underneath the indents using the focused ion beam (FIB) technique and by examining them under a transmission electron microscope (TEM). The deformation behavior underneath the indents, manifested in the bending of layers, reduction in layer thickness, shear band formation, dislocation crossing of interfaces, and orientation change of grains, has been characterized and interpreted in terms of the known deformation mechanisms of nanoscale multilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.G. Hoagland, T.E. Mitchell, J.P. Hirth, and H. Kung: On the strengthening effects of interfaces in multilayer fcc metallic composites. Philos. Mag. A 82, 643 (2002).

    CAS  Google Scholar 

  2. N.A. Mara, D. Bhattacharyya, R.G. Hoagland, and A. Misra: Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scr. Mater. 58, 874 (2008).

    Article  CAS  Google Scholar 

  3. J. McKeown, A. Misra, H. Kung, R.G. Hoagland, and M. Nastasi: Microstructures and strength of nanoscale Cu-Ag multilayers. Scr. Mater. 46, 593 (2002).

    Article  CAS  Google Scholar 

  4. A. Misra, J.P. Hirth, and R.G. Hoagland: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).

    Article  CAS  Google Scholar 

  5. A. Misra and H. Kung: Deformation behavior of nanostructure metallic multilayers. Adv. Eng. Mater. 3, 217 (2001).

    Article  CAS  Google Scholar 

  6. A. Misra, M. Verdier, H. Kung, J.D. Embury, and J.P. Hirth: Deformation mechanism maps for polycrystalline metallic multilayers. Scr. Mater. 41, 973 (1999).

    Article  CAS  Google Scholar 

  7. A. Misra, M. Verdier, Y.C. Lu, H. Kung, T.E. Mitchell, M. Nastasi, and J.D. Embury: Structure and mechanical properties of Cu-X (X = Nb,Cr,Ni) nanolayered composites. Scr. Mater. 39, 555 (1998).

    Article  CAS  Google Scholar 

  8. M. Verdier, H. Huang, F. Spaepen, J.D. Embury, and H. Kung: Microstructure, indentation and work hardening of Cu/Ag multilayers. Philos. Mag. A 86, 5009 (2006).

    Article  CAS  Google Scholar 

  9. B.M. Clemens, H. Kung, and S.A. Barnett: Structure and strength of multilayers. MRS Bull. 24, 20 (1999).

    Article  CAS  Google Scholar 

  10. H.B. Huang and F. Spaepen: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261 (2000).

    Article  CAS  Google Scholar 

  11. G.P. Zhang, Y. Liu, W. Wang, and J. Tan: Experimental evidence of plastic deformation instability in nanoscale Au/Cu multilayers. Appl. Phys. Lett. 88, 013105 (2006).

    Article  Google Scholar 

  12. Y.P. Li, G.P. Zhang, J. Tan, and B. Wu: Direct observation of dislocation plasticity in 100 nm scale AuCu multilayers. Appl. Phys. Lett. 91, 061912 (2007).

    Article  Google Scholar 

  13. X.F. Zhu, Y.P. Li, G.P. Zhang, J. Tan, and Y. Liu: Understanding nanoscale damage at a crack tip of multilayered metallic composites. Appl. Phys. Lett. 92, 161905 (2008).

    Article  Google Scholar 

  14. M.A. Phillips, B.M. Clemens, and W.D. Nix: Microstructure and nanoindentation hardness of Al/Al3Sc multilayers. Acta Mater. 51, 3171 (2003).

    Article  CAS  Google Scholar 

  15. D. Bhattacharyya, N.A. Mara, R.G. Hoagland, and A. Misra: Nanoindentation and microstructural studies of Al/TiN multilayers with unequal volume fractionsScr. Mater. 58, 981 (2008).

    Article  CAS  Google Scholar 

  16. G. Abadias, S. Dub, and R. Shmegera: Nanoindentation hardness and structure of ion beam sputtered TiN,W and TiN/W multilayer hard coatings. Surf. Coat. Technol. 200, 6538 (2006).

    Article  CAS  Google Scholar 

  17. A.T. Alpas, J.D. Embury, D.A. Hardwick, and R.W. Springer: The mechanical properties of laminated microscale composites of Al/AI203. J. Mater. Sci. 25, 1603 (1990).

    Article  CAS  Google Scholar 

  18. E.O. Hall: The deformation and ageing of mild steel. 3. Discussion of results. Proc. Phys. Soc. London, Sec. B 64, 747 (1951).

    Article  Google Scholar 

  19. N.J. Petch: The cleavage strength of polycrystals. J. Iron. Steel Inst. 174, 25 (1953).

    CAS  Google Scholar 

  20. P.M. Anderson, T. Foecke, and P.M. Hazzledine: Dislocation-based deformation mechanisms in metallic nanolaminates. MRS Bull. 24, 27 (1999).

    Article  CAS  Google Scholar 

  21. Q.Z. Li and P.M. Anderson: Dislocation-based modeling of the mechanical behavior of epitaxial metallic multilayer thin films. Acta Mater. 53, 1121 (2005).

    Article  CAS  Google Scholar 

  22. N.A. Mara, D. Bhattacharyya, P. Dickerson, R.G. Hoagland, and A. Misra: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92, 231901 (2008). Doi: 10.1063/1.2938921

    Article  Google Scholar 

  23. A. Misra, J.P. Hirth, R.G. Hoagland, J.D. Embury, and H. Kung: Dislocation mechanisms and symmetric slip in rolled nano-scale metallic multilayers. Acta Mater. 52, 2387 (2004).

    Article  CAS  Google Scholar 

  24. A. Misra and R. Hoagland: Plastic flow stability of metallic nanolaminate composites. J. Mater. Sci. 42, 1765 (2007).

    Article  CAS  Google Scholar 

  25. J.L. Hay and G.M. Pharr: Instrumented indentation testing, in ASM Handbook, vol. 8 (ASM, Metals Park, OH, 2000).

  26. D.E. Kramer, M.F. Savage, A. Lin, and T. Foecke: Novel method for TEM characterization of deformation under nanoindents in nanolayered materials. Scr. Mater. 50, 745 (2004).

    Article  CAS  Google Scholar 

  27. J.M. Molina-aldareguia, S.J. Lloyd, M. Oden, T. Joelsson, L. Hultman, and W.J. Clegg: Deformation structures under indentations in TiN/NbN single-crystal multilayers deposited by magnetron sputtering at different bombarding ion energies. Philos. Mag. A 82, 1983 (2002).

    Article  CAS  Google Scholar 

  28. N.A. Mara, A. Misra, R. Hoagland, A.V. Serugeeva, T. Tamayo, P. Dickerson, and A. Mukherjee: High-temperature mechanical behavior/microstructure correlation of Cu/Nb nanoscale multilayers. Mater. Sci. Eng., A 493, 274 (2008).

    Article  Google Scholar 

  29. L. Min, C. Wei-min, L. Nai-gang, and W. Ling-Dong: A numerical study of indentation using indenters of different geometry. J. Mater. Res. 19, 73 (2004).

    Article  CAS  Google Scholar 

  30. P.M. Anderson and Y. Shen: Transmission of a screw dislocation across a coherent, non-slipping interface. J. Mech. Phys. Solids 55. 956 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharyya, D., Mara, N.A., Dickerson, P. et al. Transmission electron microscopy study of the deformation behavior of Cu/Nb and Cu/Ni nanoscale multilayers during nanoindentation. Journal of Materials Research 24, 1291–1302 (2009). https://doi.org/10.1557/jmr.2009.0147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0147

Navigation