Skip to main content
Log in

Thermal properties of nanocrystalline Al composites reinforced by AlN nanoparticles

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To explore potential applications of nanocomposites for microelectronic packaging, the thermal properties were investigated on newly developed nanocrystalline Al composites reinforced by AlN nanoparticles. It was found that the thermal conductivity (TC) is reduced with increasing AlN volume fraction (Vp), since connectivity of Al matrix is decreased by introduction of the nanoparticles. Although AlN nanoparticles introduce thermal resistance, they still have significant contribution to the TC of the composite as high-TC inclusion. Particularly, a percolation behavior of AlN nanoparticles is thought to occur with the threshold at 23–30%. Measurements at elevated temperatures (∼500 °C) show almost no distinct degradation of TC relative to room temperature. Moreover, the coefficient of thermal expansion (CTE) is remarkably lowered as Vp increases, e.g., from 26 × 10−6 to 13.9 × 10−6 K−1, by raising Vp to 39%. Therefore, the nanocomposites may be applicable as electronic packaging material, due to the combination of acceptable TC and low CTE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
TABLE I.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. L.C. Davis, B.E. Artz: Thermal conductivity of metal-matrix composites. J. Appl. Phys. 77, 4954 1995

    Article  CAS  Google Scholar 

  2. C. Zweben: Advances in composite materials for thermal management in electronic packaging. JOM 50, 47 1998

    Article  CAS  Google Scholar 

  3. C.W. Nan, R. Birringer, D.R. Clarke, H. Gleiter: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692 1997

    Article  CAS  Google Scholar 

  4. I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia: Particulate reinforced metal matrix composites—A review. J. Mater. Sci. 26, 1137 1991

    Article  CAS  Google Scholar 

  5. D.J. Lloyd: Particle-reinforced aluminum and magnesium matrix composites. Int. Mater. Rev. 39, 1 1994

    Article  CAS  Google Scholar 

  6. D.P.H. Hasselman, L.F. Johnson: Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 21, 508 1987

    Article  Google Scholar 

  7. D.P.H. Hasselman, K.Y. Donaldson, A.L. Geiger: Effect of reinforcement particle-size on the thermal conductivity of a particulate-silicon carbide-reinforced aluminum matrix composite. J. Am. Ceram. Soc. 75, 3137 1992

    Article  CAS  Google Scholar 

  8. A.L. Geiger, D.P.H. Hasselman, K.Y. Donaldson: Effect of reinforcement particle size on the thermal conductivity of a particulate silicon carbide-reinforced aluminium-matrix composite. J. Mater. Sci. Lett. 12, 420 1993

    Article  CAS  Google Scholar 

  9. A.G. Every, Y. Tzou, D.P.H. Hasselman, R. Raj: The effect of particle-size on the thermal-conductivity of ZnS diamond composites. Acta Metall. Mater. 40, 123 1992

    Article  CAS  Google Scholar 

  10. S.C. Tjong: Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv. Eng. Mater. 9, 639 2007

    Article  CAS  Google Scholar 

  11. Y.Q. Liu, H.T. Cong, W. Wang, H.M. Cheng: AlN nanoparticle-reinforced nanocrystalline Al matrx composites: Fabrication and mechanical properties. Mater. Sci. Eng., A (2008, submitted).

  12. Z.Y. Ma, S.C. Tjong, Y.L. Li: The performance of aluminium-matrix composites with nanometric particulate Si–N–C reinforcement. Compos. Sci. Technol. 59, 263 1999

    Article  CAS  Google Scholar 

  13. D.K. Ward, W.A. Curtin, Y. Qi: Mechanical behavior of aluminum-silicon nanocomposites: A molecular dynamics study. Acta Mater. 54, 4441 2006

    Article  CAS  Google Scholar 

  14. Y.B. Tang, Y.Q. Liu, C.H. Sun, H.T. Cong: AlN nanowires for Al-based composites with high strength and low thermal expansion. J. Mater. Res. 22, 2711 2007

    Article  CAS  Google Scholar 

  15. T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito: Processing of carbon nanotube reinforced aluminum composite. J. Mater. Res. 13, 2445 1998

    Article  CAS  Google Scholar 

  16. R. Zhong, H.T. Cong, P.X. Hou: Fabrication of nano-Al based composites reinforced by single-walled carbon. Carbon 41, 848 2003

    Article  CAS  Google Scholar 

  17. S.I. Cha, K.T. Kim, S.N. Arshad, C.B. Mo, S.H. Hong: Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv. Mater. 17, 1377 2005

    Article  CAS  Google Scholar 

  18. Y.B. Tang, H.T. Cong, R. Zhong, H.M. Cheng: Thermal expansion of a composite of single-walled carbon nanotubes and nanocrystalline aluminum. Carbon 42, 3260 2004

    Article  CAS  Google Scholar 

  19. C.F. Deng, Y.X. Ma, P. Zhang, X.X. Zhang, D.Z. Wang: Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes. Mater. Lett. 62, 2301 2008

    Article  CAS  Google Scholar 

  20. A. Minnich, G. Chen: Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 91, 073105 2007

    Article  Google Scholar 

  21. P.G. Klemens, R.K. Williams: Thermal conductivity of metals and alloys. Int. Met. Rev. 31, 197 1986

    Article  CAS  Google Scholar 

  22. W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott: Thermal diffusivity measurements using the flash technique. J. Appl. Phys. 32, 1679 1961

    Article  CAS  Google Scholar 

  23. F. Wu, X. He, Y. Zeng, H.M. Cheng: Thermal transport enhancement of multi-walled carbon nanotubes/high-density polyethylene composites. Appl. Phys. A 85, 25 2006

    Article  CAS  Google Scholar 

  24. Q.F. Ma, R.S. Fang, L.C. Xiang, S. Guo: Thermal Physical Engineer’s Handbook Agricultural & Mechanical Publishing House Press Beijing, China 1986 69 197

    Google Scholar 

  25. K. Watari, H. Nakano, K. Urabe, K. Ishizaki, S.X. Cao, K. Mori: Thermal conductivity of AlN ceramic with a very low amount of grain boundary phase at 4 to 1000 K. J. Mater. Res. 17, 2940 2002

    Article  CAS  Google Scholar 

  26. Z. Ounaiesa, C. Parkb, K.E. Wiseb, E.J. Siochic, J.S. Harrisonc: Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos. Sci. Technol. 63, 1637 2003

    Article  Google Scholar 

  27. R. Landauer: The electrical resistance of binary metallic mixtures. J. Appl. Phys. 23, 779 1952

    Article  CAS  Google Scholar 

  28. C.W. Nan, R. Birringer: Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model. Phys. Rev. B 57, 8264 1998

    Article  CAS  Google Scholar 

  29. X.Y. Qin, B.M. Wu, Y.L. Du, L.D. Zhang, H.X. Tang: An experimental study on thermal diffusivity of nanocrystalline Ag. Nanostruct. Mater. 7, 383 1996

    Article  CAS  Google Scholar 

  30. L.H. Qian, Q.H. Lu, W.J. Kong, K. Lu: Electrical resistivity of fully-relaxed grain boundaries in nanocrystalline Cu. Scr. Mater. 50, 1407 2004

    Article  CAS  Google Scholar 

  31. S. Lemieux, S. Elomari, J.A. Nemes, M.D. Skibo: Thermal expansion of isotropic Duralcan metal-matrix composites. J. Mater. Sci. 33, 4381 1998

    Article  CAS  Google Scholar 

  32. A.L. Geiger, M. Jackson: Low-expansion MMCs boost avionics. Adv. Mater. Processes 136, 23 1989

    Google Scholar 

  33. Q. Zhang, G.Q. Chen, G.H. Wu, Z.Y. Xiu, B.F. Luan: Property characteristics of a AlNp/Al composite fabricated by squeeze casting technology. Mater. Lett. 57, 1453 2003

    Article  CAS  Google Scholar 

  34. R. Couturier, D. Ducret, P. Merle, J.P. Disson, P. Joubert: Elaboration and characterization of a metal matrix composite: Al/AlN. J. Eur. Ceram. Soc. 17, 1861 1997

    Article  CAS  Google Scholar 

  35. S.W. Lai, D.D.L. Chung: Superior high-temperature resistance of aluminum nitride particle-reinforced aluminum compared to silicon-carbide or alumina particle-reinforced aluminum. J. Mater. Sci. 29, 6181 1994

    Article  CAS  Google Scholar 

  36. Y. Yan, L. Geng: Effects of particle size on the thermal expansion behavior of SiCp/Al composites. J. Mater. Sci. 42, 6433 2007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Y.B. Tang for thermal expansion measurement and Dr. G.H. He and B.Q. Wang, engineer, for help in thermal diffusivity measurement and meaningful discussions. The authors also would like to thank the reviewer for the contribution of EC data analysis and the proposal of the percolation interpretation of our results. We also want to thank another review for the suggestion on the interpretation of TC of the matrix. The project was supported by the National Natural Science Foundation of China (Grant No. 50371083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. Cong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y.Q., Cong, H.T. & Cheng, H.M. Thermal properties of nanocrystalline Al composites reinforced by AlN nanoparticles. Journal of Materials Research 24, 24–31 (2009). https://doi.org/10.1557/JMR.2009.0034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2009.0034

Navigation