Skip to main content
Log in

Synthesis of Ni ferrite and Co ferrite rodlike particles by superposition of a constant magnetic field

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report the fabrication of micron-sized rodlike particles of nonstoichiometric Co and Ni ferrites by aging coprecipitated Fe(OH)2 and M(OH)2—where M is either Ni or Co—at 90 °C in the presence of an external magnetic field (B ≈ 405 mT). Potassium nitrate was used as a mild oxidant. Resultant particles were analyzed by means of electron microscopy, x-ray powder diffraction (XRD), magnetometry, energy dispersive x-ray (EDX) spectrometry, and atomic absorption spectroscopy. Rodlike particles of both types of ferrite exhibited a relatively uniform thickness, an average aspect ratio close to 10, and have a spinel crystalline structure. EDX spectrometry and atomic absorption spectroscopy confirmed the incorporation of Ni2+ and Co2+ in the respective ferrite particles. The incorporation of Co2+ led to non-negligible remanence and coercivity. The incorporation of Ni2+ led to a lower saturation magnetization, whereas the remanence and coercivity of the Ni ferrite were very low, still typical of a soft ferrimagnetic material. The mechanism of formation of the rodlike particles was investigated by the time-dependent observation of growing Ni ferrite rods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
TABLE I.
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. A.D. Shine R.C. Armstrong: The rotation of a suspended axisymmetrical ellipsoid in a magnetic-field. Rheol. Acta 26, 152 1987

    Article  CAS  Google Scholar 

  2. A. Satoh Y. Sakuda: Rheology and orientational distributions of rodlike particles with magnetic moment normal to the particle axis for semi-dense dispersions (analysis by means of mean-field approximation). J. Colloid Interface Sci. 308, 532 2007

    Article  CAS  Google Scholar 

  3. U.T. Reinhardt, E.L.M. Degroot, G.G. Fuller W.M. Kulicke: Rheooptical characterization (flow-birefringence and flow-dichroism) of the tobacco-mosaic-virus. Macromol. Chem. Phys. 196, 63 1995

    Article  CAS  Google Scholar 

  4. C. Graf, H. Kramer, M. Deggelmann, M. Hagenbuchle, C. Johner, C. Martin R. Weber: Rheological properties of suspensions of interacting rodlike FD-virus particles. J. Chem. Phys. 98, 4920 1993

    Article  CAS  Google Scholar 

  5. N. Ookubo, M. Komatsubara, H. Nakajima Y. Wada: Infinite dilution viscoelastic properties of poly(γ-benzyl-L-glutamate) in M-cresol. Biopolymers 15, 929 1976

    Article  CAS  Google Scholar 

  6. A.M. Wierenga A.P. Philipse: Low-shear viscosities of dilute dispersions of colloidal rodlike silica particles in cyclohexane. J. Colloid Interface Sci. 180, 360 1996

    Article  CAS  Google Scholar 

  7. M.T. López-López, G. Vertelov, G. Bossis, P. Kuzhir J.D.G. Durán: New magnetorheological fluids based on magnetic fibers. J. Mater. Chem. 17, 3839 2007

    Article  CAS  Google Scholar 

  8. T. Sugimoto E. Matijević: Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. J. Colloid Interface Sci. 74, 227 1980

    Article  CAS  Google Scholar 

  9. F. Vereda, J. de Vicente R. Hidalgo-Álvarez: Influence of a magnetic field on the formation of magnetite particles via two precipitation methods. Langmuir 23, 3581 2007

    Article  CAS  Google Scholar 

  10. S.W. Charles B. Issari: Preparation and properties of small acicular particles of cobalt. J. Magn. Magn. Mater. 54-7, 743 1986

    Google Scholar 

  11. L. Formaro: Magnetically induced variations in the morphology of Fe3O4 particles precipitated from solutions. Mater. Lett. 6, 295 1988

    Article  CAS  Google Scholar 

  12. J. Wang, Q.W. Chen, C. Zeng B.Y. Hou: Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Adv. Mater. 16, 137 2004

    Article  CAS  Google Scholar 

  13. H.L. Niu, Q.W. Chen, H.F. Zhu, Y.S. Lin X. Zhang: Magnetic field-induced growth and self-assembly of cobalt nanocrystallites. J. Mater. Chem. 13, 1803 2003

    Article  CAS  Google Scholar 

  14. H.L. Niu, Q.W. Chen, M. Ning, Y.S. Jia X.J. Wang: Synthesis and one-dimensional self-assembly of acicular nickel nanocrystallites under magnetic fields. J. Phys. Chem. B 108, 3996 2004

    Article  CAS  Google Scholar 

  15. Y. Zhang, R. Shi, H.Q. Xiong Y. Zhai: One-dimensional magnetite chains of nanoparticles synthesis by self-assembly in magnetic field. Int. J. Mod. Phys. B 19, 2757 2005

    Article  CAS  Google Scholar 

  16. C. Domingo, R. Rodríguez-Clemente M.A. Blesa: The pathways to spinel iron-oxides by oxidation of iron (II) in basic-media. Mater. Res. Bull. 26, 47 1991

    Article  CAS  Google Scholar 

  17. A. Broese van Groenou, P.F. Bongers A.L. Stuyts: Magnetism microstructure and crystal chemistry of spinel ferrites. Mater. Sci. Eng. 3, 317 1969

    Article  Google Scholar 

  18. A.E. Regazzoni E. Matijević: Formation of spherical colloidal nickel ferrite particles as model corrosion products. Corrosion 38, 212 1982

    Article  CAS  Google Scholar 

  19. A.E. Regazzoni E. Matijević: Formation of uniform colloidal mixed cobalt nickel ferrite particles. Colloids Surf. 6, 189 1983

    Article  CAS  Google Scholar 

  20. H. Tamura E. Matijević: Precipitation of cobalt ferrites. J. Colloid Interface Sci. 90, 100 1982

    Article  CAS  Google Scholar 

  21. T. Sugimoto: Preparation of monodispersed colloidal particles. Adv. Colloid Interface Sci. 28, 65 1987

    Article  CAS  Google Scholar 

  22. J. de Vicente, A.V. Delgado, R.C. Plaza, J.D.G. Duran F. González-Caballero: Stability of cobalt ferrite colloidal particles. Effect of pH and applied magnetic fields. Langmuir 16, 7954 2000

    Article  CAS  Google Scholar 

  23. R.C. Plaza, J. de Vicente, S. Gómez-Lopera A.V. Delgado: Stability of dispersions of colloidal nickel ferrite spheres. J. Colloid Interface Sci. 242, 306 2001

    Article  CAS  Google Scholar 

  24. F. Vereda, J. de Vicente R. Hidalgo-Álvarez: Colloidal characterization of micron-sized rod-like magnetite particles. Colloids Surf., A (2008, in press), DOI: 10.1016/j.colsurfa.2007.06.055

  25. J. de Vicente: Ph.D. Dissertation. Universidad de Granada, 2002

  26. U.D. Altermatt I.D. Brown: A real-space computer-based symmetry algebra. Acta Crystallogr., Sect. A: Fundam. Crystallogr. 43, 125 1987

    Article  Google Scholar 

  27. A. Guinier: X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, 1st ed. Dover Publications, Inc. Mineola, NY 994 121–150

  28. X-Powder Software: http://www.xpowder.com.

  29. F. Vereda, B. Rodríguez-González, J. de Vicente R. Hidalgo-Álvarez: Evidence of direct crystal growth and presence of hollow microspheres in magnetite particles prepared by oxidation of Fe(OH)2. J. Colloid Interface Sci. 318, 520 2008

    Article  CAS  Google Scholar 

  30. J. de Vicente, M.T. López-López, J.D.G. Duran F. González-Caballero: Shear flow behavior of confined magnetorheological fluids at low magnetic field strengths. Rheol. Acta 44, 94 2004

    Article  CAS  Google Scholar 

  31. C.M.B. Henderson, J.M. Charnock D.A. Plant: Cation occupancies in Mg, Co, Ni, Zn, Al ferrite spinels: A multi-element EXAFS study. J. Phys. Condens. Matter 19, 076214 2007

    Article  CAS  Google Scholar 

  32. A. Cabañas M. Poliakoff: The continuous hydrothermal synthesis of nano-particulate ferrites in near critical and supercritical water. J. Mater. Chem. 11, 1408 2001

    Article  Google Scholar 

  33. T. Kodama, Y. Wada, T. Yamamoto, M. Tsuji Y. Tamaura: Synthesis and characterization of ultrafine nickel (II)-bearing ferrites (NixFe3−xO4, x = 0.14–1.0). J. Mater. Chem. 5, 1413 1995

    Article  CAS  Google Scholar 

  34. N. Gokon, N. Hasegawa, H. Kaneko, T. Ohara Y. Tamaura: A high magnetic field effect on the M(II)-substituted magnetite formation (M = Ni, Mn, Co) in the wet process. J. Magn. Magn. Mater. 256, 293 2003

    Article  CAS  Google Scholar 

  35. P.S. Sidhu, R.J. Gilkes A.M. Posner: Synthesis and some properties of Co, Ni, Zn, Cu. Mn and Cd substituted magnetites. J. Inorg. Nucl. Chem. 40, 429 1978

    Article  CAS  Google Scholar 

  36. M. Sorescu, A. Grabias, D. Tarabasanu-Mihaila L. Diamandescu: From magnetite to cobalt ferrite. J. Mater. Synth. Process. 9, 119 2001

    Article  CAS  Google Scholar 

  37. D.S. Mathew R.S. Juang: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129, 51 2007

    Article  CAS  Google Scholar 

  38. V. Pillai D.O. Shah: Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163, 243 1996

    Article  CAS  Google Scholar 

  39. J. de Vicente, J.D.G. Duran, A.V. Delgado, F. González-Caballero G. Bossis: Effect of magnetic hysteresis of the solid phase on the rheological properties of MR fluids. Int. J. Mod. Phys. B 16, 2576 2002

    Article  Google Scholar 

  40. V. Cabuil: Encyclopedia of Surface and Colloid Science Marcel Dekker Ltd New York 2002 4306–4321

    Google Scholar 

  41. T.J. Daou, G. Pourroy, S. Begin-Colin, J.M. Greneche, C. Ulhaq-Bouillet, P. Legare, P. Bernhardt, C. Leuvrey G. Rogez: Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem. Mater. 18, 4399 2006

    Article  CAS  Google Scholar 

  42. M.F.F. Lelis, J.D. Fabris, W.N. Mussel A. Yoshihaki Takeuchi: Preparation and characterization of nickel- and cobalt-doped magnetites. Mater. Res. 6, 145 2003

    Article  CAS  Google Scholar 

  43. K.V.P.M. Shafi, Y. Koltypin, A. Gedanken, R. Prozorov, J. Balogh, J. Lendvai I. Felner: Sonochemical preparation of nanosized amorphous NiFe2O4 particles. J. Phys. Chem. B 101, 6409 1997

    Article  CAS  Google Scholar 

  44. J. Wang: Prepare highly crystalline NiFe2O4 nanoparticles with improved magnetic properties. Mater. Sci. Eng., B 127, 81 2006

    Article  CAS  Google Scholar 

  45. T. Sugimoto A. Muramatsu: Formation mechanism of monodispersed α-Fe2O3 particles in dilute FeCl3 solutions. J. Colloid Interface Sci. 184, 626 1996

    Article  CAS  Google Scholar 

  46. T. Sugimoto G. Yamaguchi: Contact recrystallization of silver halide microcrystals in solution. J. Cryst. Growth 34, 253 1976

    Article  CAS  Google Scholar 

  47. T. Sugimoto: Fine Particles: Synthesis, Characterization, and Mechanism of Growth Marcel Dekker Inc., New York 2000 58–83

    Book  Google Scholar 

  48. G. Salazar-Álvarez, R.T. Olsson, J. Sort, W.A.A. Macedo, J.D. Ardisson, M.D. Baró, U.W. Gedde J. Nogués: Enhanced coercivity in Co-rich near-stoichiometric CoFe3−xO4+δ nanoparticles prepared in large batches. Chem. Mater. 19, 4957 2007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by project MEC MAT-2006-13646-C03-03 (Ministerio de Educación y Ciencia, Spain) by the “European Regional Development Fund” (ERDF) and by projects FQM 392 and P07-FQM-2496 (Junta de Andalucía, Spain). The authors are especially grateful to Francisco Galisteo-González, for providing the software used for the generation of particle size distributions from SEM and TEM micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Vereda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vereda, F., de Vicente, J. & Hidalgo-Álvarez, R. Synthesis of Ni ferrite and Co ferrite rodlike particles by superposition of a constant magnetic field. Journal of Materials Research 23, 1764–1775 (2008). https://doi.org/10.1557/JMR.2008.0218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0218

Navigation