Skip to main content
Log in

Micromechanical properties of biological silica in skeletons of deep-sea sponges

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The silica skeleton of the deep-sea sponge Euplectella aspergillum was recently shown to be structured over at least six levels of hierarchy with a clear mechanical functionality. In particular, the skeleton is built of laminated spicules that consist of alternating layers of silica and organic material. In the present work, we investigated the micromechanical properties of the composite material in spicules of Euplectella aspergillum and the giant anchor spicule of Monorhaphis chuni. Organic layers were visualized by backscattered electron imaging in the environmental scanning electron microscope. Raman spectroscopic imaging showed that the organic layers are protein-rich and that there is an OH-enrichment in silica near the central organic filament of the spicule. Small-angle x-ray scattering revealed the presence of nanospheres with a diameter of only 2.8 nm as the basic units of silica. Nanoindentation showed a considerably reduced stiffness of the spicule silica compared to technical quartz glass with different degrees of hydration. Moreover, stiffness and hardness were shown to oscillate as a result of the laminate structure of the spicules. In summary, biogenic silica from deep-sea sponges has reduced stiffness but an architecture providing substantial toughening over that of technical glass, both by structuring at the nanometer and at the micrometer level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Gehling, J.K. Rigby: Long expected sponges from the neoproterozoic ediacara fauna of South Australia. J. Paleontol. 70(2), 185 (1996).

    Article  Google Scholar 

  2. M. Brasier, O. Green, G. Shields: Ediacarian sponge spicule clusters from southwestern Mongolia and the origin of the Cambrian fauna. Geology 25(1997).

  3. T. Saito, I. Uchida, M. Takeda: Skeletal growth of the deep-sea hexactinellid sponge Euplectella oweni, and host selection by the symbiotic shrimp Spongicola japonica (Crustacea: Decapoda: Spongicolidae). J. Zool. 258, 521 (2002).

    Article  Google Scholar 

  4. M. Berggren: Spongiocaris hexactinellicola, a new species of stenopodidean shrimp (Decapoda, Stenopodidae) associated with hexactinellid sponges from Tartar Bank, Bahamas. J. Crustacean Biol. 13, 784 (1993).

    Article  Google Scholar 

  5. J. Aizenberg, J.C. Weaver, M.S. Thanawala, V.C. Sundar, D.E. Morse, P. Fratzl: Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science 309, 275 (2005).

    Article  CAS  Google Scholar 

  6. J.C. Weaver, D.E. Morse: Molecular biology of demosponge axial filaments and their roles in biosilicification. Microsc. Res. Tech. 62, 356 (2003).

    Article  CAS  Google Scholar 

  7. G. Mayer: Rigid biological systems as models for synthetic composites. Science 310(5751), 1144 (2005).

    Article  CAS  Google Scholar 

  8. C.C. Perry, T. Keeling-Tucker: Biosilicification: The role of the organic matrix in structure control. J. Biol. Inorg. Chem. 5, 537 (2000).

    Article  CAS  Google Scholar 

  9. M. Sarikaya, H. Fong, N. Sunderland, B.D. Flinn, G. Mayer, A. Mescher, E. Gaino: Biomimetic model of a sponge-spicular optical fiber—Mechanical properties and structure. J. Mater. Res. 16(5), 1420 (2001).

    Article  CAS  Google Scholar 

  10. S.L. Walter, B.D. Flinn and G. Mayer: Mechanisms of toughening of a natural rigid composite. Mater. Sci. Eng., C (2005, in press).

    Google Scholar 

  11. F.E. Schulze: Hexactinellida, in Scientific Results of the German Deep-Sea Expedition with the Steamboat, “Valdivia” 1898-1899 edited by C. Chun (Verlag Gustav Fischer, Jena, Germany, 1904).

  12. A. Guinier, G. Fournet: Small-Single Scattering of X-rays (Wiley, New York, 1955).

    Google Scholar 

  13. P. Fratzl: Small-angle scattering in materials science—A short review of applications in alloys, ceramics and composite materials. J. Appl. Crystallogr. 36, 397 (2003).

    Article  CAS  Google Scholar 

  14. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  15. J.T. Pelton, L.R. McLean: Spectroscopic methods for analysis of protein secondary structure. Anal. Biochem. 277(2), 167 (2000).

    Article  CAS  Google Scholar 

  16. O. de Carmejane, M.D. Morris, M.K. Davis, L. Stixrude, M. Tecklenburg, R.M. Rajachar, D.H. Kohn: Bone chemical structure response to mechanical stress studied by high pressure Raman spectroscopy. Calcif. Tissue Int. 76(3), 207 (2005).

    Article  Google Scholar 

  17. E. Gailliez-Degremont, M. Bacquet, J. Laureyns, M. Morcellet: Polyamines adsorbed onto silica gel: A Raman microprobe analysis. J. Appl. Polym. Sci. 65, 871 (1997).

    Article  CAS  Google Scholar 

  18. J. Aizenberg, V.C. Sundar, A.D. Yablon, J.C. Weaver, G. Chen: Biological glass fibers: Correlation between optical and structural properties. Proc. Natl. Acad. Sci. USA 101, 3358 (2004).

    Article  CAS  Google Scholar 

  19. V.C. Sundar, A.D. Yablon, J.L. Grazul, M. Ilan, J. Aizenberg: Fibre-optical features of a glass sponge—Some superior technological secrets have come to light from a deep-sea organism. Nature 424, 899 (2003).

    Article  CAS  Google Scholar 

  20. C. Levi, J.L. Barton, C. Guillemet, E. Lebras, P. Lehuede: A remarkably strong natural glassy rod—The anchoring spicule of the Monorhaphis sponge. J. Mater. Sci. Lett. 8, 337 (1989).

    Article  CAS  Google Scholar 

  21. A. Rokas, D. Kruger, S.B. Carroll: Animal evolution and the molecular signature of radiations compressed in time. Science 310, 1933 (2005).

    Article  Google Scholar 

  22. W. Weibull: A statistical distribution function of wide applicability. J. Appl. Mech. Trans. ASME 18(3), 293 (1951).

    Google Scholar 

  23. P. Fratzl, H.S. Gupta, E.P. Paschalis, P. Roschger: Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14, 2115 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Fratzl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woesz, A., Weaver, J.C., Kazanci, M. et al. Micromechanical properties of biological silica in skeletons of deep-sea sponges. Journal of Materials Research 21, 2068–2078 (2006). https://doi.org/10.1557/jmr.2006.0251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0251

Navigation