Skip to main content
Log in

Modified embedded-atom method interatomic potential for the Fe–Pt alloy system

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A semi-empirical interatomic potential formalism, the modified embedded atom method (MEAM), has been applied to obtain an interatomic potential for the Fe–Pt alloy system, based on the previously developed potentials for pure Fe and Pt. The potential can describe basic physical properties of the alloys (lattice parameter, bulk modulus, stability of individual phases, and order/disorder transformations), in good agreement with experimental information. The procedure for the determination of potential parameter values and comparisons between the present calculation and experimental data or high level calculation are presented. The applicability of the potential to atomistic studies to investigate structural evolution of Fe50Pt50 alloy thin films during post-annealing is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ouchi: Recent advancement in perpendicular magnetic recording. IEEE Trans. Mag. 37, 1217 (2001).

    Article  CAS  Google Scholar 

  2. D. Weller, A. Moser, L. Folks, M.E. Best, W. Lee, M.F. Toney, M. Schwickert, J.U. Thiele and M.F. Doerner: High Ku materials approach to 100Gbit/in2. IEEE Trans. Mag. 36, 10 (2000).

    Article  CAS  Google Scholar 

  3. K.R. Coffey, M.A. Parker and J.K. Howard: High anisotropy L10 thin film for longitudinal recording. IEEE Trans. Mag. 31, 2737 (1995).

    Article  CAS  Google Scholar 

  4. T. Suzuki, N. Honda and K. Ouchi: Fe–Pt media for perpendicular magnetic recording. IEEE Trans. Mag. 35, 2748 (1999).

    Article  CAS  Google Scholar 

  5. S.K. Jeong, M.E. McHenry and D.E. Laughlim: Growth and characterization of L10 FePt and CoPt 〈001〉 textured polycrystalline thin films. IEEE Trans. Mag. 37, 1309 (2001).

    Article  CAS  Google Scholar 

  6. Y.H. Huang, H. Okumura and G.C. Hadjipanayis: CoPt and FePt nanowires by electrodeposition. J. Appl. Phys. 91, 6869 (2002).

    Article  CAS  Google Scholar 

  7. J.A. Christodoulides, Y. Zhang, G.C. Hadjipanayis and C. Fountzoulas: CoPt and FePt nanoparticles for high-density recording media. IEEE Trans. Mag. 36, 2333 (2000).

    Article  CAS  Google Scholar 

  8. K. Sato, B. Bian and Y. Hirotsu: Fabrication of oriented L10-FePt and FePd nanoparticles with large coercivity. J. Appl. Phys. 91, 8516 (2002).

    Article  CAS  Google Scholar 

  9. H. Zeng, M.L. Yan, N. Powers and D.J. Sellmyer: Orientation-controlled nonepitaxial L10 CoPt and FePt films. Appl. Phys. Lett. 80, 2350 (2002).

    Article  CAS  Google Scholar 

  10. D.E. Lauglin, S. Kumar, Y. Peng and A.G. Roy: Engineering the microstructure of thin films for perpendicular recording. IEEE Trans. Mag. 41, 719 (2005).

    Article  Google Scholar 

  11. K. Nishimura, K. Takahashi, H. Uchida and M. Inoue: Effects of third elements (Ag, B, Cu, Ir) addition and high Ar gas pressure on L10 FePt films. J. Magn. Magn. Mat. 272, 2189 (2004).

    Article  Google Scholar 

  12. B. Bian, D.E. Laughlin, K. Sato and Y. Hirotsu: Synthesis and structure of isolated L10 FePt particles. IEEE Trans. Mag. 36, 3021 (2000).

    Article  CAS  Google Scholar 

  13. PodgóM. rny: Electronic structure of the ordered phases of Pt–Fe alloys. Phys. Rev. B 43, 11300 (1991).

    Article  Google Scholar 

  14. R. Hayn and V. Drchal: Invar behavior of disordered fcc-FexPt1−x alloys. Phys. Rev. B 58, 4341 (1998).

    Article  CAS  Google Scholar 

  15. Y. Chen, S. Iwata and T. Mohri: First principles calculation of L10-disorder phase diagram in Fe–Pt system within the first and second nearest neighbor pair interaction energies. CALPHAD 26, 583 (2003).

    Article  Google Scholar 

  16. P. Ravindran, A. Kjekshus, H. Fjellvag, P. James, NordströL. m, B. Johansson and O. Eriksson: Large magnetocrystalline anisotropy in bilayer transition metal phases from first-principles full-potential calculations. Phys. Rev. B 63, 144409 (2001).

    Article  Google Scholar 

  17. M.I. Baskes: Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727 (1992).

    Article  CAS  Google Scholar 

  18. M.S. Daw and M.I. Baskes: Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285 (1983).

    Article  CAS  Google Scholar 

  19. M.S. Daw and M.I. Baskes: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).

    Article  CAS  Google Scholar 

  20. B.J. Lee and M.I. Baskes: Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B 62, 8564 (2000).

    Article  CAS  Google Scholar 

  21. B.J. Lee, M.I. Baskes, H. Kim and Y.K. Cho: Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys. Rev. B 64, 184102 (2001).

    Article  Google Scholar 

  22. J.H. Rose, J.R. Smith, F. Guinea and J. Ferrante: Universal features of the equations of state of metals. Phys. Rev. B 29, 2963 (1984).

    Article  CAS  Google Scholar 

  23. M.I. Baskes: Determination of modified embedded atom method parameters for nickel. Mater. Chem. Phys. 50, 152 (1997).

    Article  CAS  Google Scholar 

  24. B.J. Lee, J.H. Shim and M.I. Baskes: Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Phys. Rev. B 68, 144112 (2003).

    Article  Google Scholar 

  25. H. Okamoto: Phase Diagrams of Binary Iron Alloys; Monograph Series on Alloy Phase Diagram, Vol. 9, 1st ed. (ASM International, USA, 1993), pp. 330–336.

    Google Scholar 

  26. P. Fredriksson and S. Seetharaman: Thermodynamic studies of some Fe–Pt alloys by the solid electrolyte galvanic cell method. Scand. J. Metall. 30, 258 (2001).

    Article  CAS  Google Scholar 

  27. P. Fredriksson and B. Sundman: A thermodynamic assessment of the Fe–Pt system. CALPHAD 25, 535 (2001).

    Article  CAS  Google Scholar 

  28. I. Ansara, B. Sundman and P. Willemin: Thermodynamic modeling of ordered phases in the Ni–Al system. Acta Metall. 36, 977 (1988).

    Article  CAS  Google Scholar 

  29. B. Sundman, S.G. Fries and W.A. Oates: A thermodynamic assessment of the Au-Cu system. CALPHAD 22, 335 (1998).

    Article  CAS  Google Scholar 

  30. B.J. Lee, J.H. Shim and H.M. Park: A semi-empirical atomic potential for the Fe-Cr binary system. CALPHAD 25, 527 (2001).

    Article  CAS  Google Scholar 

  31. J.H. Shim, S.I. Park, Y.W. Cho and B.J. Lee: Modified embeddedatom method calculation for the Ni–W system. J. Mater. Res. 18, 1863 (2003).

    Article  CAS  Google Scholar 

  32. B.J. Lee and J.H. Shim: A modified embedded atom method interatomic potential for the Cu–Ni system. CALPHAD 28, 125 (2004).

    Article  CAS  Google Scholar 

  33. B.J. Lee, B.D. Wirth, J.H. Shim, J. Kwon, S.C. Kwon and J.H. Hong: An MEAM interatomic potential for the Fe–Cu alloy system and cascade simulation on pure Fe and Fe–Cu alloy. Phys. Rev. B 71, 184205 (2005).

    Article  Google Scholar 

  34. K. Sumiyama, M. Shiga, M. Morioka and Y. Nakamura: Characteristic magnetovolume effects in Invar type Fe–Pt alloys. J. Phys. F: Metal Phys. 9, 1665 (1979).

    Article  CAS  Google Scholar 

  35. J.S. Kim unpublished work (Pohang University of Science and Technology, Korea, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong-Joo Lee.

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Koo, Y. & Lee, BJ. Modified embedded-atom method interatomic potential for the Fe–Pt alloy system. Journal of Materials Research 21, 199–208 (2006). https://doi.org/10.1557/jmr.2006.0008

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0008

Navigation