Skip to main content
Log in

New lead-free relaxors based on the K0.5Na0.5NbO3–SrTiO3 solid solution

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

New lead-free relaxors have been produced from the K0.5Na0.5NbO3–SrTiO3 (KNN-STO) system. The solid solubility within the studied range of compositions (1 -x) K0.5Na0.5NbO3xSrTiO3 was observed for x up to 0.33. A pseudo-cubic perovskite structure was determined for x = 0.15 to 0.25. The high density and the uniform distribution of fine grains and pores were confirmed by the translucency of these ceramics. The 0.85KNN-0.15STO composition reaches the dielectric permittivity of above 3000 at room temperature. Dielectric spectroscopy measurements revealed that, as with lead-based complex perovskites, the cationic distribution disorder is reflected in relaxorlike properties, thus suggesting possible applications based on this environmentally friendly lead-free ceramic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook, Jr., and H. Jaffe: Piezoelectric Ceramics (Academic Press London, New York, 1971), pp. 185-212.

    Google Scholar 

  2. M. Kosec and D. Kolar: On activated sintering and electrical properties of NaKNbO3. Mater. Res. Bull. 10, 335 (1975).

    Article  CAS  Google Scholar 

  3. B. Malic, D. Jenko, J. Bernard, J. Cilensek, and M. Kosec: Synthesis and sintering of (K,Na)NbO3, in Solid-State Chemistry of Inorganic Materials IV, edited by M.A. Alario-Franco, M. Greenblatt, G. Rohrer, and M.S. Whittingham, (Mater. Res. Soc. Symp. Proc. 755, Warrendale, PA, 2003), p. 83.

    Google Scholar 

  4. M. Ichiki, L. Zhang, M. Tanaka, and R. Maeda: Electrical properties of piezoelectric sodium-potassium niobate. J. Eur. Ceram. Soc. 24, 1693 (2004).

    Article  CAS  Google Scholar 

  5. G.H. Haertling and C.E. Land: Hot-pressed (Pb,La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications. J. Am. Ceram. Soc. 54, 1 (1971).

    Article  CAS  Google Scholar 

  6. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, and S.N. Popov: Ferroelectrics with diffuse phase transitions. Soviet Physics -Solid State 2, 2584 (1961).

    Google Scholar 

  7. S.L. Swartz and T.R. Shrout: Fabrication of perovskite lead magnesium niobate. Mater. Res. Bull. 17, 1245 (1982).

    Article  CAS  Google Scholar 

  8. D. Viehland, S.J. Jang, L.E. Cross, and M. Wuttig: Deviation from Curie-Weiss behavior in relaxor ferroelectrics. Phys. Rev. B 46, 8003 (1992).

    Article  CAS  Google Scholar 

  9. L.E. Cross: Relaxor ferroelectrics. Ferroelectrics. 76, 241 (1987).

    Article  CAS  Google Scholar 

  10. Z. Kutnjak, C. Filipic, R. Pirc, A. Levstik, R. Farhi, and M. El Marssi: Slow dynamics and ergodicity breaking in a lanthanum-modified lead zirconate titanate relaxor system. Phys. Rev. B 59, 294 (1999).

    Article  CAS  Google Scholar 

  11. R. Sommer, N.K. Yushin, and J.J. van der Klink: Polar metasta-bility and an electric-field-induced phase transition in the disordered perovskite Pb(Mg1/3Nb2/3)O3. Phys. Rev. B 48, 13230 (1993).

    Article  CAS  Google Scholar 

  12. J.F. Scott and C.A. Paz de Araujo: Ferroelectric memories. Science 246, 1400 (1989).

    Article  CAS  Google Scholar 

  13. J. Ravez and A. Simon: Some solid state chemistry aspects of lead-free relaxor ferroelectrics. J. Solid State Chem. 162, 260 (2001).

    Article  CAS  Google Scholar 

  14. J. Ravez and A. Simon: New lead-free relaxor ceramics derived from BaTiO3 by cationic heterovalent subtitutions in the 12 C.N. crystallographic site. Phys Stat Solid 178, 793 (2000).

    Article  CAS  Google Scholar 

  15. S. Said and J.P. Mercurio: Relaxor behaviour of low lead and lead free ferroelectric ceramics of the Na0.5Bi0.5TiO3—PbTiO3 and Na0.5Bi0.5TiO3—K0.5Bi0.5TiO3 systems. J. Eur. Ceram. Soc. 21, 1333 (2001).

    Article  CAS  Google Scholar 

  16. T. Li, L. Li, and Z. Gui: Effect of starting powder-size of BaTiO3 on relaxor behaviour in 0.85BaTiO3—0.15 KNbO3. Ferroelectrics. 261, 113 (2001).

    Article  CAS  Google Scholar 

  17. I.P. Raevski and S.A. Prosandeev: A new, lead free family of perovskites with a diffuse phase transition: NaNbO3- based solid solutions. J. Phys. Chem. Solid 63, 1939 (2002).

    Article  CAS  Google Scholar 

  18. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crys-tallogr. A3, 751 (1976).

    Article  Google Scholar 

  19. Phase Diagrams for Ceramists, edited by M.K. Reser (Am. Ceram. Soc, Columbus, OH, 1969), No. 2334.

  20. JCPDS No. 71-2171. International Centre for Diffraction Data: Newton Square, PA, 2002.

  21. JCPDS No. 86-0179. International Centre for Diffraction Data: Newton Square, PA, 2002.

  22. V. Bobnar, B. Vodopivec, A. Levstik, M. Kosec, B. Hilczer, and Q.M. Zhang: Dielectric properties of relaxor-like vinylidene fluo-ride-trifluoroethylene-based electroactive polymers. Macromol-ecules 336, 4436 (2000).

    Google Scholar 

  23. B.E. Vugmeister and H. Rabitz: Dynamics of interacting clusters and dielectric response in relaxor ferroelectrics. Phys. Rev. B 57, 7581 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Malic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosec, M., Bobnar, V., Hrovat, M. et al. New lead-free relaxors based on the K0.5Na0.5NbO3–SrTiO3 solid solution. Journal of Materials Research 19, 1849–1854 (2004). https://doi.org/10.1557/JMR.2004.0229

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0229

Navigation