Skip to main content
Log in

Decomposition and thermodynamic property of metastable Fe-Zn solid solutions produced by mechanical alloying

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thermal decomposition of supersaturated single-phase body-centered cubic (bcc) Fe100−xZnx (5≤ x ≤65 at.%) solid solutions, processed via mechanical alloying of high-purity metal powders, was investigated using x-ray diffraction and differential scanning calorimetry (DSC). At elevated temperatures the metastable solid solution decomposed into a stable equilibrium aggregate consisting of the pure bcc Fe phase and an intermetallic compound Fe4Zn9. The decomposition temperature decreased with increasing Zn concentration. The enthalpy of decomposition for various Fe-Zn solid solutions measured by the DSC was in the range of 1.2–3.5 kJ/mol. The enthalpy of mixing of the as-milled solid solutions from elemental Fe and Zn powders was estimated to be 0.5–1.7 kJ/mol. In addition, the activation energies of decomposition for these solid solutions were determined on the basis of the Kissinger analysis, and their values appeared to be independent of the Zn concentration in the alloy, with an average of 147 ± 17 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.C. Kochs, Mater. Trans. JIM 36, 85 (1995).

    Article  CAS  Google Scholar 

  2. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).

    Article  CAS  Google Scholar 

  3. E. Ma and M. Atzmon, Mater. Chem. Phys. 39, 249 (1995).

    Article  CAS  Google Scholar 

  4. A.R. Yavari, P.J. Desré, and T. Benameur, Phys. Rev. Lett. 68,2235 (1992).

    Article  CAS  Google Scholar 

  5. C. Gente, M. Oehring, and R. Bormann, Phys. Rev. B 48, 13244 (1993).

    Article  CAS  Google Scholar 

  6. P. Bellon and R.S. Averback, Phys. Rev. Lett. 74, 1819 (1995).

    Article  CAS  Google Scholar 

  7. E. Ma, J.H. He, and P.J. Schilling, Phys. Rev. B 55, 5542 (1997).

    Article  CAS  Google Scholar 

  8. E. Ma, H.W. Sheng, J.H. He, and P.J. Schilling, Mater. Sci. Eng., A286, 48 (2000).

    Article  CAS  Google Scholar 

  9. H.W. Sheng, F. Zhou, Z.Q. Hu, and K. Lu, J. Mater. Res. 13, 308 (1998).

    Article  CAS  Google Scholar 

  10. F. Zhou, H.W. Sheng, and K. Lu, J. Mater. Res. 13, 249 (1998).

    Article  CAS  Google Scholar 

  11. J. Eckert, J.C. Holzer, and W.L. Johnson, J. Appl. Phys. 73, 131 (1993).

    Article  CAS  Google Scholar 

  12. E. Ma and M. Atzmon, J. Appl. Phys. 74, 955 (1993).

    Article  CAS  Google Scholar 

  13. T. Klassen, U. Herr, and R.S. Averback, Acta Mater. 45, 2921 (1997).

    Article  CAS  Google Scholar 

  14. B.P. Burton and P. Perrot, in Phase Diagrams of Binary Iron Alloys, edited by H. Okamoto (ASM International, Materials Park, OH, 1993), p. 459.

    Google Scholar 

  15. A.R. Miedema, P.F. de Chatel, and F.R. de Boer, Physica B 100, 1 (1980).

    Article  CAS  Google Scholar 

  16. C. Bansal, Z.Q. Gao, L.B. Hong, and B. Fultz, J. Appl. Phys. 76,5961 (1994).

    Article  CAS  Google Scholar 

  17. K. Sumiyama and Y. Nakamura, IEEE Transl. J. Magn. Jpn. TJMJ–1, 1099 (1985).

    Article  Google Scholar 

  18. F. Zhou, Y.T. Chou, and E.J. Lavernia, Mater. Trans. 42, 1566 (2001).

    Article  CAS  Google Scholar 

  19. F. Zhou, Y.T. Chou, and E.J. Lavernia, in Science and Technology of Interfaces, International Symposium in Honor of Dr. Bhakta Rath, edited by S. Ankem, C.S. Pande, I. Ovid’ko, and R. Ranganathan (The Minerals, Metals and Materials Society, Warrendale, PA,2002), p. 21.

    Google Scholar 

  20. G.R. Speich, L. Zwell, and H.A. Wriedt, Trans. Metall. Soc. AIME 230, 939 (1964).

    CAS  Google Scholar 

  21. X. Zhang, H. Wang, M. Kassem, J. Narayan, and C. Koch, J. Mater. Res. 16, 3485 (2001).

    Article  CAS  Google Scholar 

  22. L.B. Hong and B. Fultz, J. Appl. Phys. 79, 3946 (1996).

    Article  CAS  Google Scholar 

  23. P.J. Gellings, D. Koster, J. Kuit, and T. Fransen, Z. Metallkd. 71,150 (1980).

    CAS  Google Scholar 

  24. R. Swalin,Thermodynamics of Solids (John Wiley & Sons, Inc., New York, 1962), p. 8.

    Google Scholar 

  25. B.S. Murty and S. Ranganathan, Int. Mater. Rev. 43, 101 (1998).

    Article  CAS  Google Scholar 

  26. H.E. Kissinger, Anal. Chem. 29, 1702 (1957).

    Article  CAS  Google Scholar 

  27. I. Richter and M. Feller-Kniepmeier, Phys. Status Solidi A 68,289 (1981).

    Article  CAS  Google Scholar 

  28. E.A. Brandes and G.B. Brook,Smithells Metals Reference Book(Butterworth-Heinemann Ltd., Oxford, U.K., 1992), p. 13–1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, F., Chou, Y.T. & Lavernia, E.J. Decomposition and thermodynamic property of metastable Fe-Zn solid solutions produced by mechanical alloying. Journal of Materials Research 17, 3230–3236 (2002). https://doi.org/10.1557/JMR.2002.0467

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0467

Navigation