Skip to main content
Log in

Molecular mechanics of binding in carbon-nanotube–polymer composites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoscale composites have been a technological dream for many years. Recently, increased interest has arisen in using carbon nanotubes as a filler for polymer composites, owing to their very small diameters on the order of 1 nm, very high aspect ratios of 1000 or more, and exceptional strength with Young’s modulus of approximately 1 TPa. A key issue for realizing these composites is obtaining good interfacial adhesion between the phases. In this work, we used force-field based molecular mechanics calculations to determine binding energies and sliding frictional stresses between pristine carbon nanotubes and a range of polymer substrates, in an effort to understand the factors governing interfacial adhesion. The particular polymers studied were chosen to correspond to reported composites in the literature. We also examined polymer morphologies by performing energy-minimizations in a vacuum. Hydrogen bond interactions with the ∏-bond network of pristine carbon nanotubes were found to bond most strongly to the surface, in the absence of chemically altered nanotubes. Surprisingly, we found that binding energies and frictional forces play only a minor role in determining the strength of the interface, but that helical polymer conformations are essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.M.J Treacy, T.W. Ebbesen, and J.M. Gibson, Nature (London) 381, 678 (1996).

    Article  CAS  Google Scholar 

  2. E.W. Wong, P.E. Sheehan, and C.M. Lieber, Science 277, 1971 (1997).

    Article  CAS  Google Scholar 

  3. A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yanilos, and M.M.J Treacy, Phys. Rev. B 58, 14013 (1998).

    Article  CAS  Google Scholar 

  4. J.P. Salvetat, G.A.D Briggs, J.M. Bonnard, R.R. Bacsa, A.J. Kulik, T. Stöckli, N.A. Burnham, and L. Forró, Phys. Rev. Lett. 82, 944 (1999).

    Article  CAS  Google Scholar 

  5. J.P. Lu, Phys. Rev. Lett. 79, 1297 (1997).

    Article  CAS  Google Scholar 

  6. B.I. Yakobson, C.J. Brabec, and J. Bernholc, Phys. Rev. Lett. 76, 2511 (1996).

    Article  CAS  Google Scholar 

  7. N. Yao and V. Lordi, J. Appl. Phys. 84, 1939 (1998).

    Article  CAS  Google Scholar 

  8. V. Lordi and N. Yao, J. Chem. Phys. 109, 2509 (1998).

    Article  CAS  Google Scholar 

  9. N. Yao and V. Lordi, Phys. Rev. B 58, 12649 (1998).

    Article  CAS  Google Scholar 

  10. S. Iijima, C. Brabec, A. Maiti, and J. Bernholc, J. Chem. Phys. 104, 2089 (1996).

    Article  CAS  Google Scholar 

  11. M.R. Falvo, G.J. Clary, R.M. Taylor II, V. Chi, F.P. Brooks Jr, S. Washburn, and R. Superfine, Nature 389, 582 (1997).

    Article  CAS  Google Scholar 

  12. T.W. Ebbeson, P.M. Ajayan, H. Hiura, and K. Tanigaki, Nature (London) 367, 519 (1994).

    Article  Google Scholar 

  13. K. Tohji, T. Goto, H. Takahashi, Y. Shinoda, N. Shimizu, B. Jeyadevan, I. Matsuoka, Y. Saito, A. Kasuya, T. Ohsuna, K. Hiraga, and Y. Nishina, Nature (London) 383, 679 (1996).

    Article  CAS  Google Scholar 

  14. N. Yao, V. Lordi, S.X.C Ma, E. Dujardin, A. Krishnan, M.M.J Treacy, and T.W. Ebbesen, J. Mater. Res. 13, 2432 (1998);

    Article  CAS  Google Scholar 

  15. V. Lordi, S.X.C Ma, and N. Yao, Surface Science, 421, 150 (1999).

    Article  Google Scholar 

  16. N. Hamada, S. Sawada, and A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).

    Article  CAS  Google Scholar 

  17. R. Saito, M. Fujita, G. Desselhaus, and M.S. Dresselhaus, Mat. Sci. Eng. B 19, 185 (1993).

    Article  Google Scholar 

  18. R.A. Jishi, D. Inomata, K. Nakao, M.S. Dresselhaus, and G. Dresselhaus, J. Phys. Soc. Jap. 63, 2252 (1994).

    Article  CAS  Google Scholar 

  19. J.W.G Wildöer, L.C. Venema, A.G. Rinzler, R.E. Smalley, and C. Dekker, Nature (London) 391, 59 (1998).

    Article  Google Scholar 

  20. T.W. Odom, J-L. Huang, P. Kim, and C.M. Lieber, Nature (London) 391, 62 (1998).

    Article  CAS  Google Scholar 

  21. L.S. Schadler, S.C. Giannaris, and P.M. Ajayan, Appl. Phys. Lett. 73, 3842 (1998).

    Article  CAS  Google Scholar 

  22. P.M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Science 265, 1212 (1994).

    Article  CAS  Google Scholar 

  23. C. Bower, R. Rosen, L. Jin, J. Han, and O. Zhou, Appl. Phys. Lett. 74, 3317 (1999).

    Article  CAS  Google Scholar 

  24. L. Jin, C. Bower, and O. Zhou, Appl. Phys. Lett. 73, 1197 (1998).

    Article  CAS  Google Scholar 

  25. S.A. Curran, P.M. Ajayan, W.J. Blau, D.L. Carroll, J.N. Coleman, A.B. Dalton, A.P. Davey, A. Drury, B. McCarthy, S. Maier, and A. Strevens, Adv. Mater. 10, 1091 (1998).

    Article  CAS  Google Scholar 

  26. J.N. Coleman, S. Curran, A.B. Dalton, A.P. Davey, B. McCarthy, W. Blau and R.C. Barklie, Phys. Rev. B 58, R7492 (1998).

    Article  CAS  Google Scholar 

  27. B.Z. Tang and H. Xu, Macromolecules 32, 2569 (1999).

    Article  CAS  Google Scholar 

  28. H. Sun, S.J. Mumby, J.R. Maple, and A.T. Hagler, J. Amer. Chem. Soc. 116, 2978 (1994);

    Article  CAS  Google Scholar 

  29. H. Sun, J. Comp. Chem. 15, 752 (1994);

    Article  CAS  Google Scholar 

  30. H. Sun, Macromolecules 28, 701 (1995).

    Article  CAS  Google Scholar 

  31. J.R. Maple, M-J. Hwang, T.P. Stockfisch, U. Dinur, M. Waldman, C.S. Ewing, and A.T. Hagler, J. Comput. Chem. 15, 162 (1994);

    Article  CAS  Google Scholar 

  32. M-J. Hwang, T.P. Stockfisch, and A.T. Hagler, J. Am. Chem. Soc. 116, 2515 (1994).

    Article  CAS  Google Scholar 

  33. A.P. Davey (personal communication).

  34. C&EN June 7, 1999, p. 37.

  35. V. Lordi, Senior Thesis, Princeton University, Princeton, NJ (June 1999).

  36. H.C. Silvis and J.E. White, Polymer News 23, 6 (1998).

    CAS  Google Scholar 

  37. D.J. Brennan, J.E. White, and C.N. Brown, Macromolecules 31, 8281 (1998).

    Article  CAS  Google Scholar 

  38. J. Tersoff and R.S. Ruoff, Phys. Rev. Lett. 73, 676 (1994).

    Article  CAS  Google Scholar 

  39. R.A. Register (personal communication).

  40. M.R. Falvo, R.M. Taylor II, A. Helser, V. Chi, F.P. Brooks Jr, S. Washburn, and R. Superfine, Nature 397, 236 (1999).

    Article  CAS  Google Scholar 

  41. X. Blase, L.X. Bendict, E.L. Shirley, and S.G. Louie, Phys. Rev. Lett. 72, 1878 (1994).

    Article  CAS  Google Scholar 

  42. O. Stéphan, P.M. Ajayan, C. Colliex, F. Cyrot-Lackmann, and E. Sandré, Phys. Rev. B 53, 13824 (1996).

    Article  Google Scholar 

  43. Y. Saito, T. Yoshikawa, S. Bandow, M. Tomita, and T. Hayashi, Phys. Rev. B 48, 1907 (1993).

    Article  CAS  Google Scholar 

  44. W.D. Callister Jr, Materials Science and Engineering: An Introduction, 2nd ed. (Wiley, New York, 1991), p. 539ff.

    Google Scholar 

  45. Encyclopedia of Polymer Science and Engineering, 2nd ed., edited by H.F. Mark, N.M. Bikales, C.G. Overberger, and G. Menges (Wiley, New York, 1987), Vol. 8, p. 25.

  46. Encyclopedia of Polymer Science and Engineering, 2nd ed., edited by H.F. Mark, N.M. Bikales, C.G. Overberger, and G. Menges (Wiley, New York, 1987), Vol. 5, p. 370.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lordi, V., Yao, N. Molecular mechanics of binding in carbon-nanotube–polymer composites. Journal of Materials Research 15, 2770–2779 (2000). https://doi.org/10.1557/JMR.2000.0396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0396

Navigation