Skip to main content
Log in

Preferred orientation of copper phthalocyanine thin films evaporated on amorphous substrates

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A series of copper phthalocyanine thin films were prepared on amorphous substrates using physical vapor deposition at ambient temperature. Different sample preparation conditions were used: the deposition rate was varied, and the substrates was static or rotating. The preferred orientation in the thin film was studied as a function of the deposition conditions. X-ray diffraction analysis was performed using θ/2θ and pole figure measurements. In the case of layers prepared at low deposition rates and using nonrotating substrates, a very strong fiber texture was detected with (100) crystallographic planes oriented preferably parallel to the substrate surface. At higher deposition rates, an additional second type of preferred orientation was observed with (110) planes oriented preferably parallel to the substrate surface. In the case of layers prepared with rotational substrates, the (110) type of preferred orientation was quantitatively more strongly developed. If we consider electronic band structure calculations, these results imply that the electron/hole transport through the thin films is enhanced for films prepared at high deposition rates and rotating substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Simon and J-J. André, Molecular Semiconductors (SpringerVerlag, Berlin, Germany, 1985), p. 73.

    Book  Google Scholar 

  2. Phthalocyanines, edited by C.C. Leznoff and A.B.P. Lever (VCH Publishers, Weinheim, Germany, 1989–1996), Vols. 1–4.

  3. P. Haisch, G. Winter, M. Hanack, L. Lüer, H-J. Egelhaaf, and D. Oelkrug, Adv. Mater. 9, 316 (1997).

    Article  CAS  Google Scholar 

  4. D. Gu, Q. Chen, X. Tang, F. Gan, S. Shen, K. Liu, and H. Xu, Opt. Commun. 121, 125 (1995).

    Article  CAS  Google Scholar 

  5. K. Kudo, T. Sumimoto, K. Hiraga, S. Kuniyoshi, and K. Tanaka, Jpn. J. Appl. Phys. 36, 6994 (1997).

    Article  CAS  Google Scholar 

  6. R. Rella, A. Serra, P. Siciliano, A. Tepore, L. Valli, and A. Zocco, Langmuir 13, 6562 (1997).

    Article  CAS  Google Scholar 

  7. D. Wöhrle, L. Kreienhoop, and D. Schlettwein, in Phthalocyanines, edited by C.C. Leznoff and A.B.P. Lever (VCH Publishers, Weinheim, Germany, 1996), Vol. 4, p. 219.

  8. S.A. Van Slyke, C.H. Chen, and C.W. Tang, Appl. Phys. Lett. 69, 2160 (1996).

    Article  Google Scholar 

  9. G. Parthasarathy, P.E. Burrows, V. Khalfin, V.G. Kozlov, and S.R. Forrest, Appl. Phys. Lett. 72, 2138 (1998).

    Article  CAS  Google Scholar 

  10. M. Ashida, Bull. Chem. Soc. Jpn. 39, 2625 (1966).

    Article  CAS  Google Scholar 

  11. J.C. Buchholz and G.A. Somorjai, J. Chem. Phys. 66, 573 (1977).

    Article  CAS  Google Scholar 

  12. W. Mizutani, M. Shigeno, Y. Sakakibara, K. Kajimura, M. Ono, S. Tanishima, K. Ohno, and N. Toshima, J. Vac. Sci. Technol. A 8, 675 (1990).

    Article  CAS  Google Scholar 

  13. S.R. Forrest, P.E. Burrows, E.I. Haskal, and F.F. So, Phys. Rev. B 49, 11 309 (1994).

    Google Scholar 

  14. C.D. England, G.E. Collins, T.J. Schuerlein, and N.R. Armstrong, Langmuir 10, 2748 (1994).

    Article  CAS  Google Scholar 

  15. K. Hayashi, S. Kawato, Y. Fuji, T. Horiuchi, and K. Matsushige, Mol. Cryst. Liq. Cryst. 294, 103 (1997).

    Article  CAS  Google Scholar 

  16. M. Watanabe, K. Sano, M. Inoue, T. Takagi, T. Nakao, K. Yokota, and J. Takada. Appl. Surf. Sci. 130–132, 663 (1998).

    Article  Google Scholar 

  17. E. Ina, N. Matsumoto, E. Shikada, and F. Kannari, Appl. Surf. Sci. 127–129, 574 (1998).

    Article  Google Scholar 

  18. P.S. Vincett, Z.D. Popovic, and L. McIntyre, Thin Solid Films 82, 357 (1981).

    Article  CAS  Google Scholar 

  19. M. Komiyama, Y. Sakakibara, and H. Hirai, Thin Solid Films 151, L109 (1987).

    Article  CAS  Google Scholar 

  20. S. Tanishima, K. Ohno, Y. Sakakibara, and N. Toshima, Chem. Exp. 5, 153 (1990).

    CAS  Google Scholar 

  21. M.K. Debe, R.J. Poirier, and K.K. Kam, Thin Solid Films 197, 335 (1991).

    Article  CAS  Google Scholar 

  22. E.A. Silinsh, and V. Capek, Organic Molecular Crystals (AIP Press, New York, 1994), p. 15.

    Google Scholar 

  23. P. Erk, in Proc. 17th Eur. Cryst. Meeting, 24–28 Aug 1997, Lisbon, Portugal.

  24. C.J. Brown, J. Chem. Soc. A 2488 (1968).

  25. F. Iwatsu, J. Phys. Chem. 92, 1678 (1988).

    Article  CAS  Google Scholar 

  26. H. Yanagi and S. Okamoto, Appl. Phys. Lett. 71, 2563 (1997).

    Article  CAS  Google Scholar 

  27. R. Resel, N. Koch, F. Meghdadi, G. Leising, W. Unzog, and K. Reichmann, Thin Solid Films 305, 232 (1997).

    Article  CAS  Google Scholar 

  28. A. Niko, F. Meghdadi, C. Ambrosch-Draxl, P. Vogl, and G. Leising, Synth. Met. 76, 177 (1996).

    Article  CAS  Google Scholar 

  29. K. Reichmann, N. Koch, R. Resel, F. Meghdadi, and G. Leising, Proc. MIDEM 97, 249 (1997).

    Google Scholar 

  30. R. Resel, W. Graupner, C. Hochfilzer, N. Koch, F. Meghdadi, S. Tasch, M. Wohlgenannt, G. Leising, and K. Reichmann, in Proc. XVII. Int. Conf. Appl. Crystallogr. (World Scientific, Singapore, 1998), p. 413.

    Google Scholar 

  31. W.P. Hu, Y.Q. Liu, S.Q. Zhu, J. Tao, D.F. Xu, and D.B. Zhu, Thin Solid Films 347, 299 (1999).

    Article  CAS  Google Scholar 

  32. T. Nagasawa, K. Murakami, and K. Watanabe, Denki-Kagaku 66, 1034 (1998).

    Article  CAS  Google Scholar 

  33. H.K. Pulker, in Coatings on Glass, Thin Films and Technology 6, edited by G. Siddall (Elsevier Science, New York, 1984).

  34. W. Kraus and G. Nolze, J. Appl. Crystallogr. 29, 301 (1996).

    Article  CAS  Google Scholar 

  35. S. Weber, J. Appl. Crystallogr. 29, 306 (1996).

    Article  CAS  Google Scholar 

  36. C.J. Brown, J. Chem. Soc. A 2494 (1968).

  37. S.R. Forrest, M.L. Kaplan, and P.H. Schmid, J. Appl. Phys. 56, 543 (1984).

    Article  CAS  Google Scholar 

  38. H-J. Brandt, R. Resel, J. Keckes, B. Koppelhuber-Bitschnau, N. Koch, and G. Leising, in Organic Nonlinear Optical Materials and Devices, edited by B. Kippelen, H.S. Lackritz, and R.O. Claus (Mater. Res. Soc. Symp. Proc. 561, Warrendale, PA, 1999), p. 161.

  39. S. Ambily and C.S. Menon, Ind. J. Pure Appl. Phys. 34, 933 (1996).

    CAS  Google Scholar 

  40. I. Chen, J. Chem. Phys. 51, 3241 (1969).

    Article  CAS  Google Scholar 

  41. L. Guo, D.E. Ellis, K.C. Mundim, and B.M. Hoffman, J. Porphyrins Phthalocyanines 3, 196 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Resel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Resel, R., Ottmar, M., Hanack, M. et al. Preferred orientation of copper phthalocyanine thin films evaporated on amorphous substrates. Journal of Materials Research 15, 934–939 (2000). https://doi.org/10.1557/JMR.2000.0133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0133

Navigation