Skip to main content
Log in

The effect of hydrogen on the formation of carbon nanotubes and fullerenes

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel method to synthesize “clean” carbon nanotubes with relatively high yield in a hydrogen arc discharge has been developed. The quality and yield of the tubes depend sensitively on the gas pressure in the arc discharge. Sharp, open-ended nanotubes with clear lattice fringes at the edges and empty interiors have been observed. The existence of these frozen-open-ended tubes as part of nanotube-bundles provides evidence for an open-ended growth model for nanotubes. Using time of flight mass spectrometry, it was found that fullerenes, such as C60 and C70, are almost absent from the soot collected in the hydrogen arc discharge. The effect of hydrogen on the formation of fullerenes, both in the laboratory and in space, will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smally, Nature (London) 318, 162 (1985).

    Article  CAS  Google Scholar 

  2. W. Krätschmer, L. D. Lamb, Κ. Fostiropoules, and D. R. Huffman, Nature (London) 347, 354 (1990).

    Article  Google Scholar 

  3. S. lijima, Nature (London) 354, 56 (1991).

    Article  CAS  Google Scholar 

  4. T.W. Ebbesen and P.M. Ajayan, Nature (London) 358, 220 (1992).

    Article  CAS  Google Scholar 

  5. S. C. Tsang, P. J. F. Harris, and M. L. H. Green, Nature (London) 362, 520 (1993).

    Article  CAS  Google Scholar 

  6. P. M. Ajayan, T.W. Ebbesen, T. Ichihashi, S. lijima, K. Tanigaki, and H. Hiura, Nature (London) 362, 522 (1993).

    Article  CAS  Google Scholar 

  7. S. lijima, P.M. Ajayan, and T. Ichihashi, Phys. Rev. Lett. 69, 3100 (1992).

    Article  CAS  Google Scholar 

  8. R.E. Smalley, Mater. Sci. Eng. B19, 1 (1993).

    Article  CAS  Google Scholar 

  9. Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, and T. Nayashi, Chem. Phys. Lett. 204, 277 (1993).

    Article  CAS  Google Scholar 

  10. Ο. Zhou, R.M. Fleming, O.W. Murphy, C.H. Chen, R.C. Had-don, A. P. Ramirez, and S. H. Glarum, Science 263, 1774 (1994).

    Article  Google Scholar 

  11. M. Endo and H.W. Kroto, J. Phys. Chem. 96, 6941 (1992).

    Article  CAS  Google Scholar 

  12. P.M. Ajayan, T. Ichihashi, and S. lijima, Chem. Phys. Lett. 202, 384 (1993).

    Article  CAS  Google Scholar 

  13. S. lijima, Mater. Sci. Eng. B19, 172 (1993).

    Article  CAS  Google Scholar 

  14. T. P. Ong, F. Xiong, R.P.H. Chang, and C.W. White, J. Mater. Res. 7, 2429 (1992).

    Article  CAS  Google Scholar 

  15. M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, and H.W. Kroto, J. Phys. Chem. Solids 54, 1841 (1993).

    Article  CAS  Google Scholar 

  16. X. K. Wang, X. W. Lin, V. P. Dravid, J. B. Ketterson, and R. P. H. Chang, Appl. Phys. Lett. 62, 1881 (1993).

    Article  CAS  Google Scholar 

  17. T.W. Ebbesen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui, and K. Tanigaki, Chem. Phys. Lett. 209, 83 (1993).

    Article  CAS  Google Scholar 

  18. Ζ.G. Li, P.J. Fagan, and L. Liang, Chem. Phys. Lett. 207, 148 (1993).

    Article  CAS  Google Scholar 

  19. V.P. Dravid, X.W. Lin, Y. Y. Wang, X.K. Wang, A. Yee, J.B. Ketterson, and R.P.H. Chang, Science 259, 1601 (1993).

    Article  CAS  Google Scholar 

  20. M. J. Yacaman, M. M. Yoshida, L. Rendon, and J. G. Santiestehan, Appl. Phys. Lett. 62, 657 (1993).

    Article  Google Scholar 

  21. A. Oberlin, M. Endo, and T. Koyama, J. Cryst. Growth 32, 335 (1976).

    Article  CAS  Google Scholar 

  22. T. Grosser and A. Hirsch, Angew. Chem. Int. Edn. Engl. 32, 1340 (1993).

    Article  Google Scholar 

  23. T. M. Chang, A. Nairn, S. Ν. Ahmed, G. Goodloe, and P.B. Shevlin, J. Am. Chem. Soc. 114, 7603 (1992).

    Article  CAS  Google Scholar 

  24. J. R. Heath, Q. Zhang, S. C. O’Brien, R. F. Curl, H. W. Kroto, and R.E. Smalley, J. Am. Chem. Soc. 109, 359 (1987); A.W. Allai, R.A. Hallett, S. P. Balm, and H.W. Kroto, Int. J. Mod. Phys. B6, 3595 (1992).

    Article  CAS  Google Scholar 

  25. R.J. Lagow, J.J. Kampa, H.C. Wei, S.L. Battle, J.W. Genge, D. A. Laude, C. J. Harper, R. Bau, R. C. Stevens, J. F. Haw, and E. Munson, Science 267, 362 (1995).

    Article  CAS  Google Scholar 

  26. J. M. Hunter, J. L. Fye, and M. F. Jarrold, Science 260, 784 (1993); J. M. Hunter, J. L. Fye, E. J. Roskamp, and M. F. Jarrold, J. Phys. Chem. 98, 1810 (1994); G. van Henblem, N.G. Gotts, and M. T. Bowers, Nature (London) 363, 60 (1993).

    Article  CAS  Google Scholar 

  27. Κ. Β. Shelimov, J.M. Hunter, and M. F. Jarrold, Int. J. Mass Spectrom. Ion Processes 138, 17 (1994).

    Article  CAS  Google Scholar 

  28. H.W. Kroto and M. Jura, Astron. Astrophys. 263, 275 (1992).

    CAS  Google Scholar 

  29. B.H. Foing and P. Ehrenfreund, Nature (London) 369, 296 (1994).

    Article  CAS  Google Scholar 

  30. S. Petrie and D. K. Bohme, Mon. Not. R. Astron. Soc. 268, 938 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

NSF Research Experience for Undergraduate participant

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X.K., Lin, X.W., Mesleh, M. et al. The effect of hydrogen on the formation of carbon nanotubes and fullerenes. Journal of Materials Research 10, 1977–1983 (1995). https://doi.org/10.1557/JMR.1995.1977

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.1977

Navigation