Skip to main content
Log in

Mechanical properties of compositionally modulated Au-Ni thin films: Nanoindentation and microcantilever deflection experiments

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The mechanical properties of compositionally modulated Au-Ni films were investigated by submicrometer depth-sensing indentation and by deflection of micrometer-scale cantilever beams. Films prepared by sputter deposition with composition wavelengths between 0.9 and 4.0 nm were investigated. Strength was found to be high and invariant with composition wavelength. Experimental and data analysis methods were developed to provide more accurate and precise measurements of elastic stiffness. Large enhancements in stiffness (the “supermodulus effect”) were not observed. Rather, relatively small but significant minima were observed at a composition wavelength of about 1.6 nm by both techniques. These variations were found to be strongly correlated with variations in the average lattice parameter normal to the plane of the film. Both structural and mechanical property variations are consistent with a simple model in which the film consists of bulk-like Au and Ni layers with interfaces of constant thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Koehler, Phys. Rev. B 2, 547 (1970).

    Article  Google Scholar 

  2. W. D. Nix, Metall. Trans. A 20A, 2217 (1989).

    Article  CAS  Google Scholar 

  3. I. K. Schuller, K. Fartash, and M. Grimsditch, Mater. Res. Bull. XV, 33 (1990).

    Article  Google Scholar 

  4. R. C. Cammarata, T. E. Schlesinger, C. Kim, S. B. Qadri, and A. S. Edelstein, Appl. Phys. Lett. 56, 1862 (1990).

    Article  CAS  Google Scholar 

  5. W. M. C. Yang, T. Tsakalakos, and J. E. Hilliard, J. Appl. Phys. 48, 876 (1977).

    Article  CAS  Google Scholar 

  6. L. R. Testardi, R. H. Willens, J. T. Krause, D. B. McWhan, and S. Nakahara, J. Appl. Phys. 52, 510 (1981).

    Article  CAS  Google Scholar 

  7. G. E. Hénein and J. E. Hilliard, J. Appl. Phys. 54, 728 (1983).

    Article  Google Scholar 

  8. T. Tsakalakos and J. E. Hilliard, J. Appl. Phys. 54, 734 (1983).

    Article  CAS  Google Scholar 

  9. D. Baral, J. B. Ketterson, and J. E. Hilliard, J. Appl. Phys. 57, 1076 (1985).

    Article  CAS  Google Scholar 

  10. A. Jankowski and T. Tsakalakos, J. Appl. Phys. 57, 1835 (1985).

    Article  CAS  Google Scholar 

  11. S. P. Baker, Ph.D. Dissertation, Stanford University (1993).

    Google Scholar 

  12. H. Itozaki, Ph.D. Dissertation, Northwestern University (1982).

    Google Scholar 

  13. A. Kueny, M. Grimsditch, K. Miyano, I. Banerjee, C.M. Falco, and I. K. Schuller, Phys. Rev. Lett. 48, 166 (1982).

    Article  CAS  Google Scholar 

  14. R. Danner, R. P. Huebener, C. S. L. Chun, M. Grimsditch, and I. K. Schuller, Phys. Rev. B 33, 3696 (1986).

    Article  CAS  Google Scholar 

  15. P. Baumgart, B. Hillebrands, R. Mock, G. Güntherodt, A. Boufelfel, and C. M. Falco, Phys. Rev. B 34, 9004 (1986).

    Article  CAS  Google Scholar 

  16. P. Bisanti, M. B. Brodsky, G. P. Felcher, M. Grimsditch, and L. R. Sill, Phys. Rev. B 35, 7813 (1987).

    Article  CAS  Google Scholar 

  17. J. R. Dutcher, S. Lee, J. Kim, G. I. Stegeman, and C. M. Falco, Phys. Rev. Lett. 65, 1231 (1990).

    Article  CAS  Google Scholar 

  18. B. M. Davis, D. N. Seidman, A. Moreau, J. B. Ketterson, J. Mattson, and M. Grimsditch, Phys. Rev. B 43, 9304 (1991).

    Article  CAS  Google Scholar 

  19. A. Fartash, E. E. Fullerton, I. K. Schuller, S. E. Bobbin, J. W. Wagner, R. C. Cammarata, S. Kumar, and M. Grimsditch, Phys. Rev. B 44, 13760 (1991).

    Article  CAS  Google Scholar 

  20. G. Carlotti, D. Fioretto, G. Socino, B. Rodmaq, and V. Pelosin, J. Appl. Phys. 71, 4897 (1992).

    Article  CAS  Google Scholar 

  21. B. M. Clemens and G. L. Eesley, Phys. Rev. Lett. 61, 2356 (1988).

    Article  CAS  Google Scholar 

  22. A. Moreau, J. B. Ketterson, and B. Davis, J. Appl. Phys. 68, 1622 (1990).

    Article  CAS  Google Scholar 

  23. G. Richardson, J. L. Makous, H. Y. Yu, and A. S. Edelstein, Phys. Rev. B 45, 12114 (1992).

    Article  CAS  Google Scholar 

  24. B. S. Berry and W. C. Pritchet, Thin Solid Films 33, 19 (1976).

    Article  CAS  Google Scholar 

  25. H. Awano, O. Taniguchi, T. Katayama, F. Inoue, A. Itoh, and K. Kawanishi, J. Appl. Phys. 64, 6107 (1988).

    Article  CAS  Google Scholar 

  26. V. Pelosin, B. Rodmaq, J. Hillairet, G. Carlotti, D. Fioretto, and G. Socino, Mater. Sci. Forum 119–121, 359 (1993).

    Article  Google Scholar 

  27. I. K. Schuller and M. Grimsditch, J. Vac. Sci. Technol. B 4, 1444 (1986).

    Article  CAS  Google Scholar 

  28. S. P. Baker and W. D. Nix, J. Mater. Res. 9, 3140 (1994).

    Google Scholar 

  29. A. F. Jankowski, Superlat. Microstruct. 6, 427 (1989).

    Article  CAS  Google Scholar 

  30. S. R. Nutt, K. A. Green, S. P. Baker, W. D. Nix, and A. Jankowski, in Thin Films: Stresses and Mechanical Properties, edited by J. C. Bravman, W. D. Nix, D. M. Barnett, and D. A. Smith (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), p. 129.

    Google Scholar 

  31. S. P. Baker, A. F. Jankowski, S. Hong, and W. D. Nix, in Thin Films: Stresses and Mechanical Properties II, edited by M. F. Doerner, W. C. Oliver, G. M. Pharr, and F. R. Brotzen (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990), p. 289.

    Google Scholar 

  32. A. F. Jankowski, J. Appl. Phys. 71, 1782 (1992).

    Article  CAS  Google Scholar 

  33. M. A. Wall and A. F. Jankowski, Thin Solid Films 181, 313 (1989).

    Article  CAS  Google Scholar 

  34. Nano Instruments Inc., “Nanoindenter,” Knoxville, TN.

  35. M. F. Doerner and W. D. Nix, J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  36. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  37. D. Lebouvier, P. Gilormini, and E. Felder, J. Phys. D: Appl. Phys. 18, 199 (1985).

    Article  Google Scholar 

  38. T. A. Laursen and J. C. Simo, J. Mater. Res. 7, 618 (1992).

    Article  CAS  Google Scholar 

  39. Nano Instruments Inc., “Nanoindenter operation and analysis software,” Knoxville, TN.

  40. J. E. Field, in The Properties of Diamond (Academic Press, London, 1979).

    Google Scholar 

  41. T. P. Weihs, S. Hong, J. C. Bravman, and W. D. Nix, J. Mater. Res. 3, 931 (1988).

    Article  Google Scholar 

  42. S. Hong, T. P. Weihs, J. C. Bravman, and W. D. Nix, in Thin Films: Stresses and Mechanical Properties, edited by J. C. Bravman, W. D. Nix, D. Barnett, and D. A. Smith (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), p. 93.

    Google Scholar 

  43. G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (M. I. T. Press, Cambridge, MA, 1971).

    Google Scholar 

  44. S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).

    Google Scholar 

  45. D. Tabor, The Hardness of Metals (Oxford University Press, London, 1951).

    Google Scholar 

  46. C. Feldman, F. Orway, and J. Bernstein, J. Vac. Sci. Technol. A 8, 117 (1990).

    Google Scholar 

  47. R. Venkatraman and J. C. Bravman, J. Mater. Res. 7, 2040 (1992).

    Article  CAS  Google Scholar 

  48. J. B. Pethica and W. C. Oliver, in Thin Films: Stresses and Mechanical Properties, edited by J. C. Bravman, W. D. Nix, D. M. Barnett, and D. A. Smith (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), p. 13.

    Google Scholar 

  49. S. P. Baker, in Thin Films: Stresses and Mechanical Properties IV, edited by P. H. Townsend, T. P. Weihs, J. E. Sanchez, Jr., and P. Børgesen (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993).

    Google Scholar 

  50. J. J. Vlassak and W. D. Nix, Philos. Mag. A 67, 1045 (1993).

    Article  Google Scholar 

  51. G. Carlotti, D. Fioretto, L. Palmieri, G. Socino, L. Verdini, H. Xia, A. Hu, and X. K. Zhang, Phys. Rev. B 46, 12777 (1992).

    Article  CAS  Google Scholar 

  52. H. Xia, X. K. Zhang, A. Hu, S. S. Jiang, R. W. Peng, W. Zhang, D. Feng, G. Carlotti, D. Fioretto, G. Socino, and L. Verdini, Phys. Rev. B 47, 3890 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, S.P., Nix, W.D. Mechanical properties of compositionally modulated Au-Ni thin films: Nanoindentation and microcantilever deflection experiments. Journal of Materials Research 9, 3131–3144 (1994). https://doi.org/10.1557/JMR.1994.3131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.3131

Navigation