Skip to main content
Log in

Template synthesis of metal microtubule ensembles utilizing chemical, electrochemical, and vacuum deposition techniques

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microtubules are an interesting type of microstructure that resemble miniature drinking straws. Such tubular microstructures are found in nature. In addition, we and others have been investigating strategies for making synthetic analogs. We are especially interested in the idea of making metal microtubules. Four procedures for preparing metal microtubules are described in this paper. The general approach, called template-synthesis, entails using the pores in a microporous membrane as templates for forming the tubules. Microporous anodic aluminum oxide membranes and nuclear track-etch membranes are used as the template membranes. Gold and silver microtubules are made with outer diameters as small as 200 nm. These microstructures are characterized by scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Nakashima, S. Asakuma, and T. Kunitake, J. Am. Chem. Soc. 107, 509–510 (1985).

    Article  CAS  Google Scholar 

  2. C.J. Brumlik and C.R. Martin, J. Am. Chem. Soc. 113 (8), 3174–3175 (1991).

    Article  CAS  Google Scholar 

  3. C. R. Martin, L. S. Van Dyke, Z. Cai, and W. Liang, J. Am. Chem. Soc. 112 (24), 8976–8977 (1990).

    Article  CAS  Google Scholar 

  4. Z. Cai, J. Lei, W. Liang, V. Menon, and CR. Martin, Chem. Mater. 3 (5), 960–967 (1991).

    Article  CAS  Google Scholar 

  5. Z. Cai and C. R. Martin, J. Am. Chem. Soc. 111, 4138 (1989).

    Article  CAS  Google Scholar 

  6. P.E. Schoen and J.M. Schnur, U.S. Pat. Appl. 575 749 (1991); 28 pp. Avail. NTIS Order No. PAT-APPL-7-575 749.

    Google Scholar 

  7. A.S. Rudolph, J.M. Calvert, M.E. Ayers, and J.M. Schnur, J. Am. Chem. Soc. 111 (22), 8516–8517 (1989).

    Article  CAS  Google Scholar 

  8. J.M. Schnur, R. Price, P. Schoen, P. Yager, J.M. Calvert, J. Georger, and A. Singh, Thin Solid Films 152 (1–2), 181–206 (1987).

    Article  CAS  Google Scholar 

  9. J.W. Mintmire, B.I. Dunlap, and C.T. White, Phys. Rev. Lett. 68 (5), 631–634 (1992).

    Article  CAS  Google Scholar 

  10. J.J. Krebs, M. Rubinstein, P. Lubitz, M.Z. Harford, S. Baral, R. Shashidhar, Y.S. Ho, G.M. Chow, and S. Qadri, J. Appl. Phys. 70 (10, Pt. 2) 6404–6406 (1991).

    Article  CAS  Google Scholar 

  11. R. Price and M. Patchan, J. Microencapsulation 8 (3), 301–306 (1991).

    Article  CAS  Google Scholar 

  12. A. L. Plant, D. M. Benson, and G. L. Trusty, Biophys. J. 57 (5), 925–933 (1990).

    Article  CAS  Google Scholar 

  13. T.G. Burke, A.S. Rudolph, R.R. Price, J. P. Sheridan, A.W. Dalziel, A. Singh, and P. E. Schoen, Chem. Phys. Lipids 48 (3–4), 215–230 (1988).

    Article  CAS  Google Scholar 

  14. K.A.B. Lee, J. Phys. Chem. 93 (2), 926–931 (1989).

    Article  CAS  Google Scholar 

  15. M. Caffrey, J. Hogan, and A. S. Rudolph, Biochemistry 30 (8), 2134–2146 (1991).

    Article  CAS  Google Scholar 

  16. D. M. Woods, Z. Li, C. Rosenblatt, P. Yager, and P. E. Schoen, Jr., Mol. Cryst. Liq. Cryst. 167, 1–6 (1989).

    CAS  Google Scholar 

  17. A. S. Rudolph, B. P. Singh, A. Singh, and T. G. Burke, Biochim. Biophys. Acta 943 (3), 454–462 (1988).

    Article  CAS  Google Scholar 

  18. Z. Li, C. Rosenblatt, P. Yager, and P. E. Schoen, Biophys. J. 54 (2), 289–294 (1988).

    Article  CAS  Google Scholar 

  19. C. Rosenblatt, P. Yager, and P.E. Schoen, Biophys. J. 52 (2), 295–301 (1987).

    Article  CAS  Google Scholar 

  20. R. Spohr, U. S. Patent 4 338 164 (1982).

    Google Scholar 

  21. B.E. Fischer and R. Spohr, Rev. Mod. Phys. 55 (4), 907–948 (1983).

    Article  CAS  Google Scholar 

  22. W. Stockton, J. Lodge, F. Rachford, M. Orman, F. Falco, and P. Schoen, J. Appl. Phys. 70 (9), 4679–4686 (1991).

    Article  CAS  Google Scholar 

  23. S. Iijima, Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  24. Biotechnical Applications of Lipid Microstructures, 1st ed., edited by B. P. Gaber, J. M. Schnur, and D. Chapman (Plenum Publishing Corp., New York, 1988), Vol. 238.

  25. J.H. Georger, A. Singh, R.R. Price, J.M. Schnur, P. Yager, and P.E. Schoen, J. Am. Chem. Soc. 109 (20), 6169–6175 (1987).

    Article  CAS  Google Scholar 

  26. Methods in Enzymology (Structural and Contractile Proteins), 1st ed., edited by D.W. Frederiksen and L.W. Cunningham (Academic Press, New York, 1982), Vol. 85, pp. 376–417.

  27. M.F. Carlier, Mol. Cell. Biochem. 47 (2), 97–113 (1982).

    Article  CAS  Google Scholar 

  28. R.C. Weisenberg, Science 177, 1104–1105 (1972).

    Article  CAS  Google Scholar 

  29. V.P. Dravid, X. Lin, W. Wang, X.K. Wang, A. Yee, J.B. Ketterson, and R.P.H. Chang, Science 259, 1601–1604 (1993).

    Article  CAS  Google Scholar 

  30. R. Saito, M. Fujita, G. Dresselhaus, and M.S. Dresselhaus, Appl. Phys. Lett. 60 (18), 2204–2206 (1992).

    Article  CAS  Google Scholar 

  31. S. Iijima, T. Ishihashi, and Y. Ando, Nature 356 (6372), 776–778 (1992).

    Article  CAS  Google Scholar 

  32. P.E. Yeager, J.M. Schnur, and T.G. Burke, U.S. Pat. Appl. 256 680 (1989), 31 pp. Avail. NTIS Order No. PAT-APPL-7-256 680.

    Google Scholar 

  33. A.S. Rudolph, J.M. Calvert, P.E. Schoen, and J.M. Schnur, Adv. Exp. Med. Biol. 238 (Biotechnol. Appl. Lipid Microstruct.), pp. 305–320.

  34. P. Yager, R. R. Price, J. M. Schnur, P. E. Schoen, A. Singh, and D.G. Rhodes, Chem. Phys. Lipids 46 (3), 171–179 (1988).

    Article  CAS  Google Scholar 

  35. P. E. Schoen, P. Yager, and J. M. Schnur, U. S. Pat. Appl. 852 596 (1986), 24 pp. Avail. NTIS Order No. PAT-APPL-6-852 596.

    Google Scholar 

  36. A. Singh, R. Price, J.M. Schnur, P.E. Schoen, and P. Yager, Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 27 (2), 393–394 (1986).

    CAS  Google Scholar 

  37. J. M. Schnur, R. Price, P. Yager, P. Schoen, and J. H. Georger, U. S. Patent 4 877 501 (1989).

    Google Scholar 

  38. G. M. Chow, W. B. Stockton, R. Price, S. Baral, A. C. Ting, B. R. Ratna, P. E. Schoen, J. M. Schnur, and G. L. Bergeron, Mater. Sci. Eng. A 158 (1), 1–6 (1992).

    Article  Google Scholar 

  39. Alltech Associates, L, Deerfield, IL.

  40. Nuclepore Corp., Pleasanton, CA.

  41. Poretics Inc., Livermore, CA.

  42. Cyclopore, Louvain-La-Neuve, Belgium.

  43. F. Behroozi, M. Orman, R. Reese, W. Stockton, J. Calvert, F. Rachford, and P. Schoen, J. Appl. Phys. 68 (7), 3688 (1990).

    Article  Google Scholar 

  44. W.T. Ferrar, D.F. O’Brien, A. Warshawsky, and C.L. Voycheck, J. Am. Chem. Soc. 110, 288–289 (1988).

    Article  CAS  Google Scholar 

  45. A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 1st ed. (John Wiley & Sons, Inc., New York, 1980), p. 401.

    Google Scholar 

  46. K. T. Carron, C. J. Brumlik, K. I. Mullen, and C. R. Martin (unpublished research).

  47. M. Fleischmann, S. Bandyopadyay, and S. Pons, J. Phys. Chem. 89, 5537 (1985).

    Article  CAS  Google Scholar 

  48. J.N. Randall, M. A. Reed, and G. A. Frazier, J. Vac. Sci. Technol. B7 (6), 1398 (1989).

    Article  CAS  Google Scholar 

  49. J. A. Oro and J.C. Wolfe, J. Vac. Sci. Technol. B1 (4), 1088 (1983).

    Article  Google Scholar 

  50. D. A. Hazlebeck and J. B. Talbot, J. Electrochem. Soc. 138 (7), 1998–2002 (1991).

    Article  CAS  Google Scholar 

  51. R.C. Furneaux, W.R. Rigby, and A.P. Davidson, Nature 337 (6203), 147 (1989).

    Article  CAS  Google Scholar 

  52. G. E. Thompson and G. C. Wood, in Corrosion: Aqueous Processes and Passive Films, 1st ed., edited by J. C. Scully (Academic Press, London, 1983), p. 205.

    Chapter  Google Scholar 

  53. C.J. Brumlik, C.R. Martin, and K. Tokuda, Anal. Chem. 64 (10), 1201–1203 (1991).

    Article  Google Scholar 

  54. L.S. Van Dyke and C.R. Martin, Langmuir 6, 1118 (1990).

    Article  Google Scholar 

  55. P. Knight, Bio/Technology 6, 1055–1058 (1988).

    Google Scholar 

  56. R. L. Fleisher, P. B. Price, and R. M. Walker, Nuclear Tracks in Solids: Principles and Applications (University of California Press, Berkeley, CA, 1975).

    Google Scholar 

  57. S.A. Durrani and R.K. Bull, Solid State Nuclear Track Detection: Principles, Methods and Applications, 1st ed. (Pergamon Press, Elmsford, NY, 1987), Vol. 111; International Series in Natural Philosophy.

  58. P. Vater, Nucl. Tracks Radiat. Meas. 15 (1–4), 743–749 (1988).

    Article  CAS  Google Scholar 

  59. S. K. Chakarvarti and J. Vetter, Nucl. Instrum. Methods Phys. Res. B62, 109–115 (1991).

    Article  CAS  Google Scholar 

  60. G. Guillot and F.J. Rondelez, J. Appl. Phys. 52 (12), 7155–7164 (1981).

    Article  CAS  Google Scholar 

  61. H.G. Paretzke, T.A. Gruhn, and E.V. Benton, Nucl. Instrum. Methods 107 (3), 597–600 (1973).

    Article  CAS  Google Scholar 

  62. S. L. Guo, G. Tress, P. Vater, E. U. Khan, R. Dersch, M. Plachky, R. Brandt, and H.A. Khan, Nucl. Tracks Radiat. Meas. 11 (1–2), 1–4 (1986).

    Article  CAS  Google Scholar 

  63. G. Tress, E.U. Khan, P. Vater, W. Werner, R. Brandt, M. Kadner, and R. Spohr, in Aerosols Sci., Med. Technol.Aerosols Ind. ProcessesConf., edited by W. Stoeber and D.G. Hochrainer (Aerosolforsch, Schmallenberg, Fed. Rep. Ger. 1981), pp. 116–120.

    Google Scholar 

  64. R. Brandt, R. Dersch, W. Rudolph, W. Schmelzer, and P. Vater, Nucl. Tracks 12 (1–6), 981–984 (1986).

    Article  CAS  Google Scholar 

  65. K. Jamil, E.U. Khan, S.L. Guo, R. Dersch, P. Vater, R. Brandt, K.R. Spurny, and W. Molter, Nucl. Tracks 12 (1–6), 977–980 (1986).

    Article  CAS  Google Scholar 

  66. M.J. Tierney and C.R. Martin, J. Phys. Chem. 93, 2878 (1989).

    Article  CAS  Google Scholar 

  67. Electroless Plating: Fundamentals and Applications, edited by G. O. Mallory and J. B. Hajdu, 1st ed. (American Electroplaters and Surface Finishers Society, Orlando, FL, 1990), p. 458.

  68. T. S. Cale and G. B. Raupp, J. Vac. Sci. Technol. B 8 (4), 649–655 (1990).

    Article  Google Scholar 

  69. T.S. Cale, J. Vac. Sci. Technol. B 9 (5), 2551–2553 (1991).

    Article  Google Scholar 

  70. M. P. Soriaga, Chem. Rev. 90 (5), 771 (1990).

    Article  CAS  Google Scholar 

  71. C.J. Miller and M. Majda, Anal. Chem. 60 (11), 1168–1176 (1988).

    Article  CAS  Google Scholar 

  72. U. Landau, AlChE Symp. Ser. 79 (229), 218–225 (1983).

    CAS  Google Scholar 

  73. M.M. Jaksic and V.P. Komnenic, Exp. Therm. Fluid Sci. 4 (1), 56–75 (1991).

    Article  CAS  Google Scholar 

  74. Electroless Plating: Fundamentals and Applications, edited by G. O. Mallory and J. B. Hajdu, 1st ed. (American Electroplaters and Surface Finishers Society, Orlando, FL, 1990), p. 458.

  75. I.F. Cheng and CR. Martin, Anal. Chem. 60 (19), 2163–2165 (1988).

    Article  CAS  Google Scholar 

  76. C. R. Martin, Z. Cai, L. S. Van Dyke, and W. Liang, Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 32 (2), 89–90 (1991).

    CAS  Google Scholar 

  77. R. M. Penner and C. R. Martin, J. Electrochem. Soc. 133 (10), 2206 (1986).

    Article  CAS  Google Scholar 

  78. R. R. Price and R. F. Brady, Jr., U. S. Pat. Appl. 343 762 (1990), 22 pp. Avail. NTIS Order No. PAT-APPL-7-343 762.

    Google Scholar 

  79. M. Meier, A. Wokaun, and T. Vo-Dinh, J. Phys. Chem. 89, 1843–1846 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brumlik, C.J., Menon, V.P. & Martin, C.R. Template synthesis of metal microtubule ensembles utilizing chemical, electrochemical, and vacuum deposition techniques. Journal of Materials Research 9, 1174–1183 (1994). https://doi.org/10.1557/JMR.1994.1174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.1174

Navigation