Skip to main content
Log in

Electronic structure and total energy of diamond/BeO interfaces

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Electronic structure calculations are used to study the bonding at diamond/BeO interfaces. The {110} interface between zinc blende BeO and diamond is used as a representative model for general reconstructed interfaces characterized by an equal amount of Be–C and O–C bonds. The interface energy is calculated to be 2 J/m2 and combined with the estimated free surface energies to obtain an estimate of the adhesion energy. It is found to be close to the adhesion of BeO to itself, but somewhat lower than that of diamond to itself. The effects of the 7% lattice mismatch on the total energy and the band structure for a biaxially strained pseudomorphic diamond film are investigated. The effect of misfit dislocations, expected to occur for thicker films, on the adhesion energy is estimated to be lower than 10%. The bulk properties, such as equilibrium lattice constant, bulk modulus, cohesive energy, and band gap of BeO are shown to be in good agreement with experimental values and previous calculations. The valence-band offset is calculated to be 3.9 eV and found to take up most of the large band gap discontinuity. The nature of the bonding is discussed in terms of the local densities of states near the interface. The interface localized features are identified in terms of Be–C and O–C bonding and antibonding states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Koizumi, T. Murakami, T. Inuzuka, and K. Suzuki, Appl. Phys. Lett. 57, 563 (1990).

    Article  CAS  Google Scholar 

  2. W. R. L. Lambrecht and B. Segall, Phys. Rev. Β 40, 9909 (1989); ibid. 41, 5409 (1990).

    Article  CAS  Google Scholar 

  3. R. M. Wentzcovitch, A. Continenza, and A. J. Freeman, in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by J. T. Glass, R. Messier, and N. Fujimori (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), p. 611.

  4. R. M. Martin, J. Vac. Sci. Technol. 17, 178 (1980).

    Article  Google Scholar 

  5. W. A. Harrison, E. A. Kraut, J. R. Waldrop, and R. W. Grant, Phys. Rev. Β 18, 4402 (1978).

    Article  CAS  Google Scholar 

  6. W. R. L. Lambrecht, C. H. Lee, M. Methfessel, M. van Schilf-gaarde, C. Amador, and B. Segall, in Defects in Materials, edited by P. D. Bristowe, J. E. Epperson, J. E. Griffith, and Z. Liliental-Weber (Mater. Res. Soc. Symp. Proc. 209, Pittsburgh, PA, 1991), p. 667.

  7. K. J. Chang and M. L. Cohen, Solid State Commun. 50, 487 (1984).

    Article  CAS  Google Scholar 

  8. J. W. Matthew and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974).

    Google Scholar 

  9. R. People and J. C. Bean, Appl. Phys. Lett. 47, 322 (1985).

    Article  CAS  Google Scholar 

  10. B. W. Dodson and J. Y. Tsao, Appl. Phys. Lett. 51, 1325 (1987).

    Article  CAS  Google Scholar 

  11. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  12. U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).

    Article  Google Scholar 

  13. O. K. Andersen, Phys. Rev. Β 12, 3060 (1975).

    Article  CAS  Google Scholar 

  14. D. Glötzel, Β. Segall, and Ο. Κ. Andersen, Solid State Commun. 36, 403 (1980).

    Article  Google Scholar 

  15. G. B. Bachelet and N. E. Christensen, Phys. Rev. Β 31, 879 (1985).

    Article  CAS  Google Scholar 

  16. Ν. Ε. Christensen, Solid State Commun. 68, 959 (1988).

    Article  CAS  Google Scholar 

  17. W. R. L. Lambrecht and B. Segall, Phys. Rev. Β 43, 7070 (1991).

    Article  CAS  Google Scholar 

  18. J. H. Rose, J. R. Smith, F. Guinea, and J. Ferrante, Phys. Rev. Β 29, 2963 (1984).

    Article  CAS  Google Scholar 

  19. F. Bechstedt and R. Del Sole, Phys. Rev. Β 38, 7710 (1988).

    Article  CAS  Google Scholar 

  20. D. M. Roessler, W. C. Walker, and E. Loh, J. Phys. Chem. Solids 30, 157 (1969).

    Article  CAS  Google Scholar 

  21. R. Gründler, Κ. Breuer, and W. Tews, Phys. Status Solidi Β 86, 329 (1978).

    Article  Google Scholar 

  22. V. A. Fomichev, Fiz. Tverd. Tela (Leningrad) 13, 907 (1971) [Sov. Phys. Solid State 13, 754 (1971)].

    CAS  Google Scholar 

  23. K. J. Chang, S. Froyen, and M. L. Cohen, J. Phys. C 16, 3475 (1983).

    Article  CAS  Google Scholar 

  24. W. A. Brantley, J. Appl. Phys. 44, 534 (1973).

    Article  CAS  Google Scholar 

  25. D. M. Wood and A. Zunger, Phys. Rev. Β 40, 4062 (1989).

    Article  CAS  Google Scholar 

  26. W. R. L. Lambrecht, B. Segall, and O. K. Andersen, Phys. Rev. Β 41, 2813 (1990).

    Article  CAS  Google Scholar 

  27. F. H. Pollak and M. Cardona, Phys. Rev. 172, 816 (1968).

    Article  CAS  Google Scholar 

  28. L. Kleinman, Phys. Rev. 128, 2614 (1962).

    Article  CAS  Google Scholar 

  29. M. Cardona and Ν. Ε. Christensen, Solid State Commun. 58, 421 (1986).

    Article  CAS  Google Scholar 

  30. L. Brey, N. E. Christensen, and M. Cardona, Phys. Rev. Β 36, 2638 (1988).

    Google Scholar 

  31. O. H. Nielsen, Phys. Rev. Β 34, 5808 (1986).

    Article  CAS  Google Scholar 

  32. W. A. Harrison, Electronic Structure and the Properties of Solids (Dover, New York, 1989).

    Google Scholar 

  33. G. A. Slack, J. Phys. Chem. Solids 34, 321 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambrecht, W.R.L., Segall, B. Electronic structure and total energy of diamond/BeO interfaces. Journal of Materials Research 7, 696–705 (1992). https://doi.org/10.1557/JMR.1992.0696

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1992.0696

Navigation