Skip to main content
Log in

The surface topography of non-shear treated pitch and PAN carbon fibers as viewed by the STM

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The atomic structure and roughness on the surface of a carbon fiber have a great effect on the degree of bonding of that fiber in a carbon fiber composite. Although there have been many studies on the bulk structure of these fibers, this is the first study dealing with the atomic surface structure of several carbon fibers. With the advent of the scanning tunneling microscope (STM), it is now possible to study both the roughness and structure of these fibers on the atomic scale. Type II PAN based fibers were found to have a rougher surface than type II pitch-based fibers. Similar to what has been observed in the interior of pitch fibers, the percentage of graphitic structure on the surface increased with the degree of heat treatment and with the modulus of the fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. P. Hoffman, F. J. Vastola, and P.L. Walker, Jr., Carbon 22, 585 (1984).

    Article  CAS  Google Scholar 

  2. F. R. Eirich, in Interface Conversion for Polymer Coatings, edited by P. Weiss and G. D. Cheever (American Elsevier, New York, 1968).

    Google Scholar 

  3. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).

    Article  Google Scholar 

  4. W. P. Hoffman, V. B. Elings, and J.A. Gurley, Carbon 26, 754 (1988).

    Article  CAS  Google Scholar 

  5. C.F. Quate, Physics Today, Aug., 26 (1986).

  6. P. K. Hansma and J. Tersoff, J. Appl. Phys. 61 (2), R1 (15 Jan 1987).

  7. G. Katagiri, H. Ishida, and A. Ishitani, Carbon 26, 565 (1988).

    Article  CAS  Google Scholar 

  8. D. J. Johnson, I. Tomizuka, and O. Watanabe, Carbon 13, 529 (1975).

    Article  CAS  Google Scholar 

  9. R. Bacon, Philos. Trans. R. Soc. London, A 294, 437 (1979).

    Google Scholar 

  10. M. Guigon and A. Oberlin, Compos. Sci. Technol. 25, 231 (1986).

    Article  CAS  Google Scholar 

  11. D. J. Johnson, J. Phys. Appl. Phys. 20, 286 (1987).

    Article  CAS  Google Scholar 

  12. M. Endo, J. Mater. Sci. 23, 598 (1988).

    Article  CAS  Google Scholar 

  13. J. D. FitzGerald and G. H. Taylor, Ext. Abs. Carbon 88, 386, Newcastle upon Tyne (1988).

  14. F. R. Barnet and M. K. Noor, Carbon 11, 281 (1973).

    Article  CAS  Google Scholar 

  15. S. C. Bennett and D. J. Johnson, Carbon 17, 25 (1979).

    Article  CAS  Google Scholar 

  16. M. Guigon and A. Oberlin, Compos. Sci. Technol. 27, 1 (1986).

    Article  CAS  Google Scholar 

  17. D. J. Johnson, Chem. and Ind. 18, 692 (1982).

    Google Scholar 

  18. D. J. Johnson, in Chemistry and Physics of Carbon, edited by P. Thrower (Marcel Dekker, New York, 1987), Vol. 20, p. 1.

  19. X. Bourrat, E. J. Roche, and J. G. Lavin, Carbon 28, 435 (1990).

  20. J. D. Brooks and G. H. Taylor, in Chemistry and Physics of Carbon, edited by P. L. Walker, Jr. (Marcel Dekker, New York, 1968), Vol. 4, p. 243.

  21. H. Marsh and P. L. Walker, Jr., in Chemistry and Physics of Carbon, edited by P. L. Walker, Jr. and P. Thrower (Marcel Dekker, New York, 1979), Vol. 15, p. 229.

  22. V. Serin, R. Fourmeaux, Y. Kihn, and J. Sevely, Carbon 28, 573 (1990).

    Article  CAS  Google Scholar 

  23. W. P. Hoffman, W. C. Hurley, T. W. Owens, and H. T. Phan, Ext. Abs. Carbone 90, 204, Paris (1990).

  24. G. Reiss, J. Vancea, H. Wittmann, J. Zweck, and H. Hoffmann, J. Appl. Phys. 67, 1156 (1990).

    Article  CAS  Google Scholar 

  25. S. Park and C. F. Quate, Appl. Phys. Lett. 48, 112 (1986).

    Article  CAS  Google Scholar 

  26. R. J. Colton, S. M. Baker, R. J. Driscoll, M. G. Youngquist, J. D. Baldeschwieler, and W. J. Kaiser, J. Vac. Sci. Technol. A6, 349 (1988).

    Article  Google Scholar 

  27. J. D. Todd and J.B. Pethica, J. Phys.: Condens. Matter 1, 9823 (1989).

    Google Scholar 

  28. J. E. Yao and Y. K. Jiao, J. Vac. Sci. Technol. A8, 508 (1990).

    Article  Google Scholar 

  29. T. Tiedje, J. Varon, H. Deckman, and J. Stokes, J. Vac. Sci. Technol. 6, 372 (1988).

    Article  CAS  Google Scholar 

  30. J. Tersoff, Phys. Rev. Lett. 57, 440 (1986).

    Article  CAS  Google Scholar 

  31. H. A. Mizes, S. Park, and W. A. Harrison, Phys. Rev. B 36, 4491 (1987).

    Article  CAS  Google Scholar 

  32. J. B. Pethica, Phys. Rev. Lett. 57, 3235 (1986).

    Article  CAS  Google Scholar 

  33. J. M. Soler, A. M. Baro, N. Garcia, and H. Rohrer, Phys. Rev. Lett. 57, 444 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, W.P., Hurley, W.C., Liu, P.M. et al. The surface topography of non-shear treated pitch and PAN carbon fibers as viewed by the STM. Journal of Materials Research 6, 1685–1694 (1991). https://doi.org/10.1557/JMR.1991.1685

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1991.1685

Navigation