Skip to main content
Log in

Structure and bonding studies of the C: N thin films produced by rf sputtering method

  • Diamond and Diamond-Like Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thin C: N films were prepared by rf diode sputtering of a graphite target in a mixed argon/nitrogen plasma. We have observed a systematic variation of the properties of these C: N films with an increase in the nitrogen partial pressure. XPS, AES, and TEM studies show that nitrogen will stabilize the diamond sp3 bonding. From XPS studies, we found that the density of our C: N films is increased from 1.37 × 1023 atoms/cm3 to 1.63 × 1023 atoms/cm3 using a 100% nitrogen plasma. The energy gap of our nitrogen carbon also shows an increase from 1.1 eV to 1.4 eV using a 100% nitrogen plasma. The mechanical properties also are shown to be enhanced for certain applications. By using the same method, we can also show that it can produce 100% amorphous C: N films which are more diamond-like as compared with other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Khan and J. A. Woollam, J. Appl. Phys. 55, 4299 (1984).

    Article  CAS  Google Scholar 

  2. L.P. Andersson, Thin Solid Films 86, 193 (1981).

    Article  CAS  Google Scholar 

  3. E. G. Spencer, P. N. Schmit, D. J. Joy, and F. J. Sansalone, Appl. Phys. Lett. 29, 228 (1976).

    Article  Google Scholar 

  4. M. J. Mirtich, D. M. Swec, and J. C. Angus, Thin Solid Films 131, 245 (1985).

    Article  CAS  Google Scholar 

  5. C. Weissmantel, G. Reisse, H-J. Erler, F. Henny, K. Bewilogua, U. Ebersbach, and C. Schwer, Thin Solid Films 63, 315 (1979).

    Article  CAS  Google Scholar 

  6. B. A. Banks and S. Rutledge, J. Vac. Sci. Technol. 21, 807 (1982).

    Article  CAS  Google Scholar 

  7. M. Somolowski, A. Somolosska, B. Gomeili, A. Michalski, A. Rusem, and Z. Rmanowski, J. Cryst. Growth 47, 421 (1979).

    Article  Google Scholar 

  8. K. Enke, Thin Solid Films 80, 227 (1981).

    Article  CAS  Google Scholar 

  9. L. Holland and S. M. Ojaha, Thin Solid Films 58, 107 (1979).

    Article  CAS  Google Scholar 

  10. L.P. Anderson, S. Berg, H. Norstom, R. Olaison, and S. Tonia, Thin Solid Films 63, 155 (1979).

    Article  Google Scholar 

  11. S. Berg and L. P. Anderson, Thin Solid Films 58, 117 (1979).

    Article  CAS  Google Scholar 

  12. D. S. Whitemell and R. Williamson, Thin Solid Films 35, 225 (1976).

    Google Scholar 

  13. B. Myerson and F.W. Smith, Solid State Commun. 34, 531 (1980).

    Article  Google Scholar 

  14. B. Myerson and F.W. Smith, J. Non-Cryst. Solids 35, 435 (1980).

    Article  Google Scholar 

  15. S. Fujimori and K. Nagai, Jpn. J. Appl. Phys. 20, L194 (1981).

    Article  CAS  Google Scholar 

  16. C. J. Torng, J. M. Sivertsen, and J. H. Judy, in Perpendicular Magnetic Recording Proceeding, Japan, p. 169 (1989).

  17. C. J. Torng, T. Yeh, J. M. Sivertsen, and J. H. Judy, in Diamond, Boron Nitride, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by J.T. Glass, R. F. Messier, and N. Fijimori (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990).

    Google Scholar 

  18. T. Miyazawa, S. Misawa, S. Yoshida, and S-I. Gonda, J. Appl. Phys. 55, 188 (1984).

    Article  CAS  Google Scholar 

  19. J. Hauser, J. Non-Cryst. Solids 23, 21 (1977).

    Article  Google Scholar 

  20. N. Wada, P. J. Gaczi, and S. A. Solin, J. Non-Cryst. Solids 35, 543 (1980).

    Article  Google Scholar 

  21. M. Morgan, Thin Solid Films 7, 313 (1971).

    Article  CAS  Google Scholar 

  22. T. Yeh, C. Chang, J. M. Sivertsen, and J. H. Judy, in Perpendicular Magnetic Recording Proceeding, Japan, p. 163 (1989).

  23. J. Robertson, Advances in Physics 35, 317 (1986).

    Article  CAS  Google Scholar 

  24. P. G. Lurie and J. M. Wilson, Surf. Sci. 65, 476 (1977).

    Article  CAS  Google Scholar 

  25. F. R. McFeely, S. P. Kowalczyk, L. Ley, R. G. Cavell, R. A. Pollak, and D. A. Shirely, Phys. Rev. B 9, 5268 (1974).

    Article  CAS  Google Scholar 

  26. Hsias-chu Tsai and D. B. Bogy, J. Vac. Sci. Technol. A5 (6), 3287 (1987).

    Article  Google Scholar 

  27. B. E. Williams and J.T. Glass, J. Mater. Res. 4, 373 (1989).

    Article  CAS  Google Scholar 

  28. S. R. Kasi, H. Kang, and J.W. Rabalais, J. Vac. Sci. Technol. A6 (3), 1788 (1988).

    Article  Google Scholar 

  29. T. J. Moraver and T.W. Orent, J. Vac. Sci. Technol. 18 (2), 226 (1981).

    Article  Google Scholar 

  30. S. R. Kasi, H. Kang, and J.W. Rabalais, J. Chem. Phys. 88 (9), 5914 (1988).

    Article  CAS  Google Scholar 

  31. T. Mori and Y. Namba, J. Appl. Phys. 55, 3276 (1984).

    Article  CAS  Google Scholar 

  32. N.F. Mott, Conduction in Non-Crystalline Materials (Clarendon, Oxford, 1987), p. 88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torng, C.J., Sivertsen, J.M., Judy, J.H. et al. Structure and bonding studies of the C: N thin films produced by rf sputtering method. Journal of Materials Research 5, 2490–2496 (1990). https://doi.org/10.1557/JMR.1990.2490

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.2490

Navigation